Degradation of bisphenol S by peroxymonosulfate activation through monodispersed CoFe2O4 nanoparticles anchored on natural palygorskite

被引:24
|
作者
Li, Yabin [1 ]
Chen, Zhonglin [1 ]
Qi, Jingyao [1 ]
Kang, Jing [1 ]
Shen, Jimin [1 ]
Yan, Pengwei [1 ]
Wang, Weiqiang [1 ]
Bi, Lanbo [1 ]
Zhang, Xiaoxiao [1 ]
Zhu, Xinwei [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resources & Environm, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
Peroxymonosulfate; Bisphenol S; Palygorskite; Sulfate radical; SPENT BLEACHING EARTH; GENERATION; PERSULFATE; RADICALS; KINETICS; CATALYST; REMOVAL;
D O I
10.1016/j.seppur.2021.119492
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Bisphenol S (BPS) has been detected frequently in water bodies, which poses a serious threat to human health and the environment. The sulfate radical-based advanced oxidation process is considered as a promising water purification technology by activating peroxymonosulfate (PMS). However, a catalyst with low metal leaching rate and high effective catalytic ability is needed to activate PMS. In this study, natural clay of palygorskite (PAL) was used to mediate monodispersed CoFe2O4 nanoparticles to degrade BPS by PMS activation. The monodispersed CoFe2O4 nanoparticles were distributed and anchored on the surface of PAL, which caused the 16%CoFe2O4@PAL (16%-CFO@PAL) composite expose more reaction sites, thus exhibiting excellent catalytic performance. A satisfactory BPS removal rate (> 99%) was obtained by introducing 50 mg L-1 16%-CFO@PAL and 0.16 mM PMS. The interaction mechanism between CoFe2O4 nanoparticles and PAL was discussed. The Al-O-Fe bond between CoFe2O4 nanoparticles and PAL endowed the 16%-CFO@PAL composite with low metal leaching property, high stability and reusability. SO4.- and 1O2 played a dominant role in the degradation of BPS. The generation mechanism of reactive species was proposed. The influences of various degradation parameters (e.g., catalyst dosage, PMS concentration, initial solution pH, and BPS concentration) and water constituents (e.g., inorganic anions and NOM) on the degradation of BPS were investigated. Based on the identified intermediates and density functional theory (DFT) calculations, the possible degradation pathways of BPS were discussed. This study provides a new idea for the preparation of high-efficiency natural clay-based PMS catalysts for water purification.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] CoFe2O4 nanoparticles synthesized with natural templates
    Ferreira, L. P.
    Cruz, M. M.
    Oliveira, M. L.
    Mendo, S. G.
    Alves, A. F.
    Godinho, M.
    Carvalho, M. D.
    RSC ADVANCES, 2016, 6 (77): : 73506 - 73516
  • [22] Efficient moxifloxacin degradation by CoFe2O4 magnetic nanoparticles activated peroxymonosulfate: Kinetics, pathways and mechanisms
    Liu, Lili
    Mi, Haosheng
    Zhang, Meng
    Sun, Feifei
    Zhan, Rui
    Zhao, Hanbin
    He, Siqi
    Zhou, Lei
    CHEMICAL ENGINEERING JOURNAL, 2021, 407
  • [23] Synthesis of CoFe2O4/natural kaolin activated peroxymonosulfate for visible light degradation of organic contaminants
    Liu, Zhangpei
    Zhang, Yu
    Tai, Yuehui
    Gao, Ruishuang
    Liu, Xinyu
    Niu, Benben
    Zhang, Yingbo
    Fu, Wei
    Han, Boyu
    Yang, Xiuye
    Liu, Qifeng
    Optical Materials, 2022, 134
  • [24] Improvement of synergistic effect photocatalytic/peroxymonosulfate activation for degradation of amoxicillin using carbon dots anchored on rod-like CoFe2O4
    Weilong Shi
    Yanan Liu
    Wei Sun
    Yuanzhi Hong
    Xiangyu Li
    Xue Lin
    Feng Guo
    Junyou Shi
    Chinese Journal of Chemical Engineering, 2022, 52 (12) : 136 - 145
  • [25] Improvement of synergistic effect photocatalytic/peroxymonosulfate activation for degradation of amoxicillin using carbon dots anchored on rod-like CoFe2O4
    Shi, Weilong
    Liu, Yanan
    Sun, Wei
    Hong, Yuanzhi
    Li, Xiangyu
    Lin, Xue
    Guo, Feng
    Shi, Junyou
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2022, 52 : 136 - 145
  • [26] Synthesis of CoFe2O4/natural kaolin activated peroxymonosulfate for visible light degradation of organic contaminants
    Liu, Zhangpei
    Zhang, Yu
    Tai, Yuehui
    Gao, Ruishuang
    Liu, Xinyu
    Niu, Benben
    Zhang, Yingbo
    Fu, Wei
    Han, Boyu
    Yang, Xiuye
    Liu, Qifeng
    OPTICAL MATERIALS, 2022, 134
  • [27] Efficient moxifloxacin degradation by CoFe2O4 magnetic nanoparticles activated peroxymonosulfate: Kinetics, pathways and mechanisms
    Liu, Lili
    Mi, Haosheng
    Zhang, Meng
    Sun, Feifei
    Zhan, Rui
    Zhao, Hanbin
    He, Siqi
    Zhou, Lei
    Chemical Engineering Journal, 2021, 407
  • [28] Activation of peroxymonosulfate by CoFe2O4 loaded on metal-organic framework for the degradation of organic dye
    Zhang, Ke
    Sun, Dedong
    Ma, Chun
    Wang, Guanlong
    Dong, Xiaoli
    Zhang, Xinxin
    CHEMOSPHERE, 2020, 241
  • [29] Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles
    Xu, Mengjuan
    Li, Jun
    Yan, Yan
    Zhao, Xiuge
    Yan, Jianfei
    Zhang, Yunhong
    Lai, Bo
    Chen, Xi
    Song, Liping
    CHEMICAL ENGINEERING JOURNAL, 2019, 369 : 403 - 413
  • [30] Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism
    Wang, Qiongfang
    Shao, Yisheng
    Gao, Naiyun
    Chu, Wenhai
    Chen, Juxiang
    Lu, Xian
    Zhu, Yanping
    An, Na
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 189 : 176 - 185