Photometric redshifts for the Kilo-Degree Survey Machine-learning analysis with artificial neural networks

被引:53
|
作者
Bilicki, M. [1 ,2 ,3 ]
Hoekstra, H. [1 ]
Brown, M. J. I. [4 ]
Amaro, V. [5 ]
Blake, C. [6 ]
Cavuoti, S. [5 ,7 ,8 ]
de Jong, J. T. A. [1 ,9 ]
Georgiou, C. [1 ]
Hildebrandt, H. [10 ]
Wolf, C. [11 ]
Amon, A. [14 ]
Brescia, M. [7 ]
Brough, S. [12 ]
Costa-Duarte, M. V. [1 ,13 ]
Erben, T. [10 ]
Glazebrook, K. [6 ]
Grado, A. [7 ]
Heymans, C. [14 ]
Jarrett, T. [15 ]
Joudaki, S. [16 ]
Kuijken, K. [1 ]
Longo, G. [5 ]
Napolitano, N. [7 ]
Parkinson, D. [17 ,18 ]
Vellucci, C. [5 ]
Kleijn, G. A. Verdoes [9 ]
Wang, L. [9 ,19 ]
机构
[1] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[2] Natl Ctr Nucl Res, Astrophys Div, POB 447, PL-90950 Lodz, Poland
[3] Univ Zielona Gora, Janusz Gil Inst Astron, Ul Szafrana 2, PL-65516 Zielona Gora, Poland
[4] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
[5] Univ Federico II, Dept Phys E Pancini, Via Cinthia 6, I-80126 Naples, Italy
[6] Swinburne Univ Technol, Ctr Astrophys & Supercomp, POB 218, Hawthorn, Vic 3122, Australia
[7] INAF Astron Observ Capodimonte, Via Moiariello 16, I-80131 Naples, Italy
[8] Ist Nazl Fis Nucl, Sect Naples, Via Cinthia 6, I-80126 Naples, Italy
[9] Univ Groningen, Kapteyn Astron Inst, Postbus 800, NL-9700 AV Groningen, Netherlands
[10] Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany
[11] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
[12] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
[13] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, R Matao 1226, BR-05508090 Sao Paulo, Brazil
[14] Univ Edinburgh, Royal Observ, Inst Astron, Scottish Univ Phys Alliance, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland
[15] Univ Cape Town, Dept Astron, Private Bag X3, ZA-7701 Rondebosch, South Africa
[16] Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England
[17] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[18] Korea Astron & Space Sci Inst, Daejeon 34055, South Korea
[19] SRON Netherlands Inst Space Res, Landleven 12, NL-9747 AD Groningen, Netherlands
来源
ASTRONOMY & ASTROPHYSICS | 2018年 / 616卷
基金
欧洲研究理事会; 美国国家科学基金会; 澳大利亚研究理事会; 美国安德鲁·梅隆基金会;
关键词
galaxies: distances and redshifts; catalogs; large-scale structure of Universe; methods: data analysis; methods: numerical; methods: statistical; MASS ASSEMBLY GAMA; DIGITAL SKY SURVEY; 100 SQUARE DEGREES; GALAXY GROUPS; DATA RELEASE; LENSING ANALYSIS; SURVEY DESIGN; CONSTRAINTS; KIDS-450; WEB;
D O I
10.1051/0004-6361/201731942
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a machine-learning photometric redshift analysis of the Kilo-Degree Survey Data Release 3, using two neural-network based techniques: ANNz2 and MLPQNA. Despite limited coverage of spectroscopic training sets, these ML codes provide photo-zs of quality comparable to, if not better than, those from the BPZ code, at least up to z(phot) less than or similar to 0.9 and r less than or similar to 23.5. At the bright end of r less than or similar to 20, where very complete spectroscopic data overlapping with KiDS are available, the performance of the ML photo-zs clearly surpasses that of BPZ, currently the primary photo-z method for KiDS. Using the Galaxy And Mass Assembly (GAMA) spectroscopic survey as calibration, we furthermore study how photo-zs improve for bright sources when photometric parameters additional to magnitudes are included in the photo-z derivation, as well as when VIKING and WISE infrared bands are added. While the fiducial four-band ugri setup gives a photo-z bias <delta z/(1 + z)> = -2 x 10(-4) and scatter sigma(delta z/(1+z)) < 0.022 at mean < z > = 0.23, combining magnitudes, colours, and galaxy sizes reduces the scatter by similar to 7% and the bias by an order of magnitude. Once the ugri and IR magnitudes are joined into 12-band photometry spanning up to 12 mu m, the scatter decreases by more than 10% over the fiducial case. Finally, using the 12 bands together with optical colours and linear sizes gives <delta z/(1 + z)> < 4 x 10(-5) and sigma(delta z/(1+z)) < 0.019. This paper also serves as a reference for two public photo-z catalogues accompanying KiDS DR3, both obtained using the ANNz2 code. The first one, of general purpose, includes all the 39 million KiDS sources with four-band ugri measurements in DR3. The second dataset, optimized for low-redshift studies such as galaxy-galaxy lensing, is limited to r less than or similar to 20, and provides photo-zs of much better quality than in the full-depth case thanks to incorporating optical magnitudes, colours, and sizes in the GAMA-calibrated photo-z derivation.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Machine-learning enhanced photometric analysis of the extremely bright GRB 210822A
    Angulo-Valdez, Camila
    Becerra, Rosa L.
    Pereyra, Margarita
    Garcia-Cifuentes, Keneth
    Vargas, Felipe
    Watson, Alan M.
    De Colle, Fabio
    Fraija, Nissim
    Butler, Nathaniel R.
    Dainotti, Maria G.
    Dichiara, Simone
    Lee, William H.
    Troja, Eleonora
    Bloom, Joshua S.
    Jesus Gonzalez, J.
    Kutyrev, Alexander S.
    Prochaska, J. Xavier
    Ramirez-Ruiz, Enrico
    Richer, Michael G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 527 (03) : 8140 - 8150
  • [22] Machine-learning enhanced photometric analysis of the extremely bright GRB 210822A
    Angulo-Valdez, Camila
    Becerra, Rosa L.
    Pereyra, Margarita
    Garcia-Cifuentes, Keneth
    Vargas, Felipe
    Watson, Alan M.
    De Colle, Fabio
    Fraija, Nissim
    Butler, Nathaniel R.
    Dainotti, Maria G.
    Dichiara, Simone
    Lee, William H.
    Troja, Eleonora
    Bloom, Joshua S.
    Jesus Gonzalez, J.
    Kutyrev, Alexander S.
    Prochaska, J. Xavier
    Ramirez-Ruiz, Enrico
    Richer, Michael G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (03) : 8140 - 8150
  • [23] Advances in artificial neural networks, machine learning and computational intelligence
    Navarin, Nicolo
    Mulders, Dounia
    Oneto, Luca
    NEUROCOMPUTING, 2024, 571
  • [24] Advances in artificial neural networks, machine learning, and computational intelligence
    Lee, J. A.
    Schleif, F. -M.
    Martinetz, Thomas
    NEUROCOMPUTING, 2011, 74 (09) : 1299 - 1300
  • [25] Advances in artificial neural networks, machine learning and computational intelligence
    Aiolli, Fabio
    Biehl, Michael
    Oneto, Luca
    NEUROCOMPUTING, 2018, 298 : 1 - 3
  • [26] Advances in artificial neural networks, machine learning and computational intelligence
    Oneto, Luca
    Schleif, Frank-Michael
    Sperduti, Alessandro
    NEUROCOMPUTING, 2025, 618
  • [27] Advances in artificial neural networks, machine learning and computational intelligence
    Aiolli, Fabio
    Bonnet-Loosli, Gaelle
    Herault, Romain
    NEUROCOMPUTING, 2017, 268 : 1 - 3
  • [28] New Advances in Artificial Neural Networks and Machine Learning Techniques
    Olga Valenzuela
    Andreu Catala
    Davide Anguita
    Ignacio Rojas
    Neural Processing Letters, 2023, 55 : 5269 - 5272
  • [29] New Advances in Artificial Neural Networks and Machine Learning Techniques
    Valenzuela, Olga
    Catala, Andreu
    Anguita, Davide
    Rojas, Ignacio
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 5269 - 5272
  • [30] Advances in artificial neural networks, machine learning and computational intelligence
    Oneto, Luca
    Bunte, Kerstin
    Navarin, Nicolo
    NEUROCOMPUTING, 2022, 470 : 300 - 303