Progressive high-dimensional similarity join

被引:0
|
作者
Tok, Wee Hyong [1 ]
Bressan, Stephane [1 ]
Lee, Mong-Li [1 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore 117548, Singapore
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Rate-Based Progressive Join (RPJ) is a non-blocking relational equijoin algorithm. It is an equijoin that can deliver results progressively. In this paper, we first present a naive extension, called neRPJ, to the progressive computation of the similarity join of high-dimensional data. We argue that this naive extension is not suitable. We therefore propose an adequate solution in the form of a Result-Rate Progressive Join (RRPJ) for high-dimensional distance similarity joins. Using both synthetic and real-life datasets, we empirically show that RRPJ is effective and efficient, and outperforms the naive extension.
引用
收藏
页码:233 / +
页数:2
相关论文
共 50 条
  • [11] An efficient parallel algorithm for high dimensional similarity join
    Alsabti, K
    Ranka, S
    Singh, V
    [J]. FIRST MERGED INTERNATIONAL PARALLEL PROCESSING SYMPOSIUM & SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING, 1998, : 556 - 560
  • [12] Similarity Query Processing for High-Dimensional Data
    Qin, Jianbin
    Wang, Wei
    Xiao, Chuan
    Zhang, Ying
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (12): : 3437 - 3440
  • [13] Element similarity in high-dimensional materials representations
    Onwuli, Anthony
    Hegde, Ashish V.
    Nguyen, Kevin V. T.
    Butler, Keith T.
    Walsh, Aron
    [J]. DIGITAL DISCOVERY, 2023, 2 (05): : 1558 - 1564
  • [14] Similarity Learning for High-Dimensional Sparse Data
    Liu, Kuan
    Bellet, Aurelien
    Sha, Fei
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 653 - 662
  • [15] Fast similarity search for high-dimensional dataset
    Wang, Quan
    You, Suya
    [J]. ISM 2006: EIGHTH IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA, PROCEEDINGS, 2006, : 799 - +
  • [16] Efficient kNN Join over Dynamic High-Dimensional Data
    Ukey, Nimish
    Yang, Zhengyi
    Zhang, Guangjian
    Liu, Boge
    Li, Binghao
    Zhang, Wenjie
    [J]. DATABASES THEORY AND APPLICATIONS (ADC 2022), 2022, 13459 : 63 - 75
  • [17] kNN Join for Dynamic High-Dimensional Data: A Parallel Approach
    Ukey, Nimish
    Yang, Zhengyi
    Yang, Wenke
    Li, Binghao
    Li, Runze
    [J]. DATABASES THEORY AND APPLICATIONS, ADC 2023, 2024, 14386 : 3 - 16
  • [18] Similarity join for low- and high- dimensional data
    Kalashnikov, DV
    Prabhakar, S
    [J]. EIGHTH INTERNATIONAL CONFERENCE ON DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PROCEEDINGS, 2003, : 7 - 16
  • [19] High-Dimensional Similarity Query Processing for Data Science
    Qin, Jianbin
    Wang, Wei
    Xiao, Chuan
    Zhang, Ying
    Wang, Yaoshu
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 4062 - 4063
  • [20] High-Dimensional Similarity Search for Scalable Data Science
    Echihabi, Karima
    Zoumpatianos, Kostas
    Palpanas, Themis
    [J]. 2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 2369 - 2372