NP-hardness of geometric set cover and hitting set with rectangles containing a common point

被引:3
|
作者
Madireddy, Raghunath Reddy [1 ]
Mudgal, Apurva [1 ]
机构
[1] Indian Inst Technol Ropar, Dept Comp Sci & Engn, Rupnagar 140001, Punjab, India
关键词
Axis-parallel rectangles; Geometric set cover; Geometric hitting set; NP-hardness; Computational geometry;
D O I
10.1016/j.ipl.2018.09.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that both set cover and hitting set problems with points and axis-parallel rectangles are NP-hard even when (i) all rectangles share a common point and (ii) there are only two types of rectangles a x b and b x a for some positive integers a and b. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [21] Improved Results on Geometric Hitting Set Problems
    Nabil H. Mustafa
    Saurabh Ray
    [J]. Discrete & Computational Geometry, 2010, 44 : 883 - 895
  • [22] Geometric Hitting Set for Segments of Few Orientations
    Sándor P. Fekete
    Kan Huang
    Joseph S. B. Mitchell
    Ojas Parekh
    Cynthia A. Phillips
    [J]. Theory of Computing Systems, 2018, 62 : 268 - 303
  • [23] Implicit Hitting Set Algorithms for Reasoning Beyond NP
    Saikko, Paul
    Wallner, Johannes P.
    Jarvisalo, Matti
    [J]. FIFTEENTH INTERNATIONAL CONFERENCE ON THE PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING, 2016, : 104 - 113
  • [24] Geometric Hitting Set for Segments of Few Orientations
    Fekete, Sandor P.
    Huang, Kan
    Mitchell, Joseph S. B.
    Parekh, Ojas
    Phillips, Cynthia A.
    [J]. APPROXIMATION AND ONLINE ALGORITHMS, WAOA 2015, 2015, 9499 : 145 - 157
  • [25] Geometric Hitting Set for Segments of Few Orientations
    Fekete, Sandor P.
    Huang, Kan
    Mitchell, Joseph S. B.
    Parekh, Ojas
    Phillips, Cynthia A.
    [J]. THEORY OF COMPUTING SYSTEMS, 2018, 62 (02) : 268 - 303
  • [26] Hardness of set cover with intersection 1
    Kumar, VSA
    Arya, S
    Ramesh, H
    [J]. AUTOMATA LANGUAGES AND PROGRAMMING, 2000, 1853 : 624 - 635
  • [27] COVERING A POINT SET BY TWO DISJOINT RECTANGLES
    Kim, Sang-Sub
    Bae, Sang Won
    Ahn, Hee-Kap
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2011, 21 (03) : 313 - 330
  • [28] Efficient construction of a small hitting set for combinatorial rectangles in high dimension
    Nathan Linial
    Michael Luby
    Michael Saks
    David Zuckerman
    [J]. Combinatorica, 1997, 17 : 215 - 234
  • [29] Efficient construction of a small hitting set for combinatorial rectangles in high dimension
    Linial, N
    Luby, M
    Saks, M
    Zuckerman, D
    [J]. COMBINATORICA, 1997, 17 (02) : 215 - 234
  • [30] Covering a Point Set by Two Disjoint Rectangles
    Ahn, Hee-Kap
    Bae, Sang Won
    [J]. ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 5369 : 728 - +