Conversational emotion recognition studies based on graph convolutional neural networks and a dependent syntactic analysis

被引:30
|
作者
Shou, Yuntao [1 ]
Meng, Tao [1 ]
Ai, Wei [1 ]
Yang, Sihan [1 ]
Li, Keqin [2 ]
机构
[1] Cent South Univ Forestry & Technol, Sch Comp & Informat Engn, Hunan, Peoples R China
[2] SUNY Coll New Paltz, Dept Comp Sci, New Paltz, NY 12561 USA
基金
中国国家自然科学基金;
关键词
Dependency parsing; Dialogue emotion recognition; Graph convolution neural network; Self attention mechanism; DOMAIN;
D O I
10.1016/j.neucom.2022.06.072
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal Emotion Recognition for Conversation (ERC) is a challenging multi-class classification task that requires recognizing multiple speakers' emotions in text, audio, video, and other modalities. ERC has received considerable attention from researchers due to its potential applications in opinion mining, advertising, and healthcare. However, the syntactic structure characteristics of the text itself have not been considered in this study. Taking into account this, this paper proposes a conversational affective analysis model (DSAGCN) combining dependent syntactic analysis and graph convolutional neural networks. Since words that reflect emotional polarity are usually concentrated exclusively in limited regions, the DSAGCN model first employs a self-attention mechanism to capture the most effective words in the dialogue context and obtain a more accurate vector representation of the emotional semantics. Then, based on speaker relationships and dependent syntactic relationships, the multimodal sentiment relationship graphs are constructed. Finally, a graph convolutional neural network is used to complete the recognition of multimodal emotion. In extensive experiments on two real datasets, IEMOCAP and MELD, the DSAGCN model outperforms the existing models in terms of average accuracy and f1 values for multimodal emotion recognition, especially for emotions such as "happiness" and "anger". Thus, dependent syntactic analysis and self-attention mechanism can enhance the model's ability to understand emotions.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:629 / 639
页数:11
相关论文
共 50 条
  • [21] Bayesian Graph Neural Networks for EEG-Based Emotion Recognition
    Chen, Jianhui
    Qian, Hui
    Gong, Xiaoliang
    CLINICAL IMAGE-BASED PROCEDURES, DISTRIBUTED AND COLLABORATIVE LEARNING, ARTIFICIAL INTELLIGENCE FOR COMBATING COVID-19 AND SECURE AND PRIVACY-PRESERVING MACHINE LEARNING, CLIP 2021, DCL 2021, LL-COVID19 2021, PPML 2021, 2021, 12969 : 24 - 33
  • [22] Facial Emotion Recognition using Convolutional Neural Networks
    Rzayeva, Zeynab
    Alasgarov, Emin
    2019 IEEE 13TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT 2019), 2019, : 91 - 95
  • [23] Emotion recognition by assisted learning with convolutional neural networks
    He, Xuanyu
    Zhang, Wei
    NEUROCOMPUTING, 2018, 291 : 187 - 194
  • [24] Continuous Emotion Recognition with Spatiotemporal Convolutional Neural Networks
    Teixeira, Thomas
    Granger, Eric
    Lameiras Koerich, Alessandro
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [25] Facial Emotion Recognition using Convolutional Neural Networks
    Gopichand, G.
    Reddy, I. Ravi Prakash
    Santhi, H.
    Akula, Vijaya Krishna
    IMPENDING INQUISITIONS IN HUMANITIES AND SCIENCES, ICIIHS-2022, 2024, : 198 - 203
  • [26] Continuous Speech Emotion Recognition with Convolutional Neural Networks
    Vryzas, Nikolaos
    Vrysis, Lazaros
    Matsiola, Maria
    Kotsakis, Rigas
    Dimoulas, Charalampos
    Kalliris, George
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2020, 68 (1-2): : 14 - 24
  • [27] Continuous speech emotion recognition with convolutional neural networks
    Vryzas, Nikolaos
    Vrysis, Lazaros
    Matsiola, Maria
    Kotsakis, Rigas
    Dimoulas, Charalampos
    Kalliris, George
    AES: Journal of the Audio Engineering Society, 2020, 68 (1-2): : 14 - 24
  • [28] Speech emotion recognition with deep convolutional neural networks
    Issa, Dias
    Demirci, M. Fatih
    Yazici, Adnan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 59
  • [29] Multiple Convolutional Neural Networks in EEG Emotion Recognition
    Khairunissa, Hana Dwi
    Djamal, Esmeralda Contessa
    Wulandari, Arlisa
    2021 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATICS ENGINEERING (IC2IE 2021), 2021, : 30 - 35
  • [30] Facial emotion recognition using convolutional neural networks
    Sarvakar K.
    Senkamalavalli R.
    Raghavendra S.
    Santosh Kumar J.
    Manjunath R.
    Jaiswal S.
    Materials Today: Proceedings, 2023, 80 : 3560 - 3564