Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia

被引:57
|
作者
Liu, Chao [1 ]
Gates, Keith P. [2 ]
Fang, Longhou [1 ]
Amar, Marcelo J. [3 ]
Schneider, Dina A. [1 ]
Geng, Honglian [1 ]
Huang, Wei [1 ]
Kim, Jungsu [1 ]
Pattison, Jennifer [1 ]
Zhang, Jian [4 ]
Witztum, Joseph L. [1 ]
Remaley, Alan T. [3 ]
Duc Dong, P. [2 ]
Miller, Yury I. [1 ]
机构
[1] Univ Calif San Diego, Dept Med, Div Endocrinol & Metab, La Jolla, CA 92093 USA
[2] Sanford Childrens Hlth Res Ctr, Programs Genet Dis & Dev & Aging & Stem Cell & Re, Sanford Burnham Med Res Inst, La Jolla, CA USA
[3] NHLBI, Lipoprot Metab Sect, Cardiopulm Branch, NIH, Bethesda, MD 20892 USA
[4] Chinese Acad Sci, State Key Lab Mol Dev Biol, Inst Genet & Dev Biol, Beijing, Peoples R China
基金
美国国家卫生研究院;
关键词
Zebrafish; Apolipoprotein C-II; APOC2; Lipoprotein lipase; Hyperlipidemia; APOLIPOPROTEIN C-II; VASCULAR LIPID-ACCUMULATION; LIPOPROTEIN-LIPASE ACTIVITY; HIGH-DENSITY-LIPOPROTEIN; IN-VIVO; SEVERE HYPERTRIGLYCERIDEMIA; FUNCTION MUTATIONS; CLINICAL-FEATURES; ADIPOSE-TISSUE; DEFICIENT MICE;
D O I
10.1242/dmm.019836
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Apolipoprotein C-II (APOC2) is an obligatory activator of lipoprotein lipase. Human patients with APOC2 deficiency display severe hypertriglyceridemia while consuming a normal diet, often manifesting xanthomas, lipemia retinalis and pancreatitis. Hypertriglyceridemia is also an important risk factor for development of cardiovascular disease. Animal models to study hypertriglyceridemia are limited, with no Apoc2-knockout mouse reported. To develop a genetic model of hypertriglyceridemia, we generated an apoc2 mutant zebrafish characterized by the loss of Apoc2 function. apoc2 mutants show decreased plasma lipase activity and display chylomicronemia and severe hypertriglyceridemia, which closely resemble the phenotype observed in human patients with APOC2 deficiency. The hypertriglyceridemia in apoc2 mutants is rescued by injection of plasma from wild-type zebrafish or by injection of a human APOC2 mimetic peptide. Consistent with a previous report of a transient apoc2 knockdown, apoc2 mutant larvae have a minor delay in yolk consumption and angiogenesis. Furthermore, apoc2 mutants fed a normal diet accumulate lipid and lipid-laden macrophages in the vasculature, which resemble early events in the development of human atherosclerotic lesions. In addition, apoc2 mutant embryos show ectopic overgrowth of pancreas. Taken together, our data suggest that the apoc2 mutant zebrafish is a robust and versatile animal model to study hypertriglyceridemia and the mechanisms involved in the pathogenesis of associated human diseases.
引用
收藏
页码:989 / 998
页数:10
相关论文
共 50 条
  • [31] Structure-function studies of loss-of-function KCa2.2 mutant channels
    Rahman, Mohammad Asikur
    Nam, Young Woo
    Yang, Grace
    Myles, Myles D.
    Orfali, Razan
    Cui, Meng
    Zhang, Miao
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 252A - 252A
  • [32] Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development
    William KF Tse
    Birgit Eisenhaber
    Steven HK Ho
    Qimei Ng
    Frank Eisenhaber
    Yun-Jin Jiang
    BMC Genomics, 10
  • [33] Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development
    Tse, William K. F.
    Eisenhaber, Birgit
    Ho, Steven H. K.
    Ng, Qimei
    Eisenhaber, Frank
    Jiang, Yun-Jin
    BMC GENOMICS, 2009, 10
  • [34] FAS/FASL are dysregulated in chordoma and their loss-of-function impairs zebrafish notochord formation
    Ferrari, Luca
    Pistocchi, Anna
    Libera, Laura
    Boari, Nicola
    Mortini, Pietro
    Bellipanni, Gianfranco
    Giordano, Antonio
    Cotelli, Franco
    Riva, Paola
    ONCOTARGET, 2014, 5 (14) : 5712 - 5724
  • [35] The Genome-Wide Impact of Nipblb Loss-of-Function on Zebrafish Gene Expression
    Spreafico, Marco
    Mangano, Eleonora
    Mazzola, Mara
    Consolandi, Clarissa
    Bordoni, Roberta
    Battaglia, Cristina
    Bicciato, Silvio
    Marozzi, Anna
    Pistocchi, Anna
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (24) : 1 - 12
  • [36] A Zebrafish Loss-of-Function Model for Human CFAP53 Mutations Reveals Its Specific Role in Laterality Organ Function
    Noel, Emily S.
    Momenah, Tarek S.
    Al-Dagriri, Khalid
    Al-Suwaid, Abdulrahman
    Al-Shahrani, Safar
    Jiang, Hui
    Willekers, Sven
    Oostveen, Yara Y.
    Chocron, Sonja
    Postma, Alex V.
    Bhuiyan, Zahurul A.
    Bakkers, Jeroen
    HUMAN MUTATION, 2016, 37 (02) : 194 - 200
  • [37] Loss-of-function genetic diseases and the concept of pharmaceutical targets -: Reply
    Brinkmann, Ryan R.
    Dube, Marie-Pierre
    Rouleau, Guy A.
    Orr, Andrew C.
    Samuels, Mark E.
    NATURE REVIEWS GENETICS, 2007, 8 (05) : 404 - 404
  • [38] Genetic Load of Loss-of-Function Polymorphic Variants in Great Apes
    de Valles-Ibanez, Guillem
    Hernandez-Rodriguez, Jessica
    Prado-Martinez, Javier
    Luisi, Pierre
    Marques-Bonet, Tomas
    Casals, Ferran
    GENOME BIOLOGY AND EVOLUTION, 2016, 8 (03): : 871 - 877
  • [39] Preimplantation genetic diagnosis for myotonic dystrophy type 1: detection of crossover between the gene and the linked marker APOC2
    Kakourou, Georgia
    Dhanjal, Seema
    Daphnis, Danny
    Doshi, Alpesh
    Nuttall, Sarah
    Gotts, Sarah
    Serhal, Paul
    Delhanty, Joy
    Harper, Joyce
    SenGupta, Sioban
    PRENATAL DIAGNOSIS, 2007, 27 (02) : 111 - 116
  • [40] Drought adaptation in Arabidopsis thaliana by extensive genetic loss-of-function
    Monroe, J. Grey
    Powell, Tyler
    Price, Nicholas
    Mullen, Jack L.
    Howard, Anne
    Evans, Kyle
    Lovell, John T.
    McKay, John K.
    ELIFE, 2018, 7