Recovery of functions from weak data using unsymmetric meshless kernel-based methods

被引:7
|
作者
Schaback, Robert [1 ]
机构
[1] Inst Numer & Angew Math, D-37083 Gottingen, Germany
关键词
approximation convolution; least squares; Petrov-Galerkin; overdetermined systems; error bounds; stability;
D O I
10.1016/j.apnum.2007.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent engineering applications successfully introduced unsymmetric meshless local Petrov-Galerkin (MLPG) schemes. As a step towards their mathematical analysis, this paper investigates nonstationary unsymmetric Petrov-Galerkin-type meshless kernel-based methods for the recovery of L) functions from finitely many weak data. The results cover solvability conditions and error bounds in negative Sobolev norms with partially optimal rates. These rates are mainly determined by the approximation properties of the trial space, while choosing sufficiently many test functions ensures stability. Numerical examples are provided, supporting the theoretical results and leading to new questions for future research. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:726 / 741
页数:16
相关论文
共 50 条
  • [21] Using a meshless kernel-based method to solve the Black–Scholes variational inequality of American options
    M. Moradipour
    S. A. Yousefi
    [J]. Computational and Applied Mathematics, 2018, 37 : 627 - 639
  • [22] Kernel-based grouping of histogram data
    Lange, Tilman
    Buhmann, Joachim M.
    [J]. MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 632 - +
  • [23] Kernel-based adaptive approximation of functions with discontinuities
    Lenarduzzi, Licia
    Schaback, Robert
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 307 : 113 - 123
  • [24] Kernel-based identification using Lebesgue-sampled data
    Gonzalez, Rodrigo A.
    Tiels, Koen
    Oomen, Tom
    [J]. AUTOMATICA, 2024, 164
  • [25] Using local correlation in kernel-based smoothers for dependent data
    Peterson, DR
    Zhao, HW
    Eapen, S
    [J]. BIOMETRICS, 2003, 59 (04) : 984 - 991
  • [26] Kernel-Based Analysis of Massive Data
    Mhaskar, Hrushikesh N.
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2020, 6
  • [27] Kernel Map Compression for Speeding the Execution of Kernel-Based Methods
    Arif, Omar
    Vela, Patricio A.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06): : 870 - 879
  • [28] Preoperative diagnosis of ovarian tumors using Bayesian kernel-based methods
    Van Calster, B.
    Timmerman, D.
    Lu, C.
    Suykens, J. A. K.
    Valentine, L.
    Van Holsbeke, C.
    Amant, F.
    Vergote, I.
    Van Huffel, S.
    [J]. ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2007, 29 (05) : 496 - 504
  • [29] A Kernel-Based Framework for Learning Graded Relations From Data
    Waegeman, Willem
    Pahikkala, Tapio
    Airola, Antti
    Salakoski, Tapio
    Stock, Michiel
    De Baets, Bernard
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (06) : 1090 - 1101
  • [30] KERNEL-BASED RETRIEVAL OF ATMOSPHERIC PROFILES FROM IASI DATA
    Camps-Valls, Gustavo
    Laparra, Valero
    Munoz-Mari, Jordi
    Gomez-Chova, Luis
    Calbet, Xavier
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2813 - 2816