Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network

被引:55
|
作者
Murlidhar, Bhatawdekar Ramesh [1 ,2 ]
Nguyen, Hoang [3 ,4 ]
Rostami, Jamal [5 ]
Bui, XuanNam [3 ,4 ]
Armaghani, Danial Jahed [6 ]
Ragam, Prashanth [7 ]
Mohamad, Edy Tonnizam [1 ]
机构
[1] Univ Teknol Malaysia, Fac Engn, Ctr Trop Geoengn Geotrop, Sch Civil Engn, Skudai 81310, Malaysia
[2] Indian Inst Technol, Dept Min Engn, Kharagpur 721302, W Bengal, India
[3] Hanoi Univ Min & Geol, Min Fac, Dept Surface Min, Hanoi 100000, Vietnam
[4] Hanoi Univ Min & Geol, Innovat Sustainable & Responsible Min ISRM Grp, Hanoi 100000, Vietnam
[5] Colorado Sch Mines, Earth Mech Inst, Dept Min Engn, Golden, CO 80401 USA
[6] South Ural State Univ, Inst Architecture & Construct, Dept Urban Planning Engn Networks & Syst, Chelyabinsk 454080, Russia
[7] Kakatiya Inst Technol & Sci, Dept ECE, Warangal 506015, Andhra Pradesh, India
关键词
Flyrock; Harris hawks optimization (HHO); Multi-layer perceptron (MLP); Random forest (RF); Support vector machine (SVM); Whale optimization algorithm (WOA); ARTIFICIAL-INTELLIGENCE TECHNIQUES; SUPPORT VECTOR MACHINE; ENGINEERING PROPERTIES; ROCK FRAGMENTATION; ANN; REGRESSION; MODEL; SENSITIVITY; PARAMETERS; ALGORITHM;
D O I
10.1016/j.jrmge.2021.08.005
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In mining or construction projects, for exploitation of hard rock with high strength properties, blasting is frequently applied to breaking or moving them using high explosive energy. However, use of explosives may lead to the flyrock phenomenon. Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans, especially workers in the working sites. Thus, prediction of flyrock is of high importance. In this investigation, examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out. One hundred and fifty-two blasting events in three open-pit granite mines in Johor, Malaysia, were monitored to collect field data. The collected data include blasting parameters and rock mass properties. Site-specific weathering index (WI), geological strength index (GSI) and rock quality designation (RQD) are rock mass properties. Multi-layer perceptron (MLP), random forest (RF), support vector machine (SVM), and hybrid models including Harris Hawks optimization-based MLP (known as HHO-MLP) and whale optimization algorithm-based MLP (known as WOA-MLP) were developed. The performance of various models was assessed through various performance indices, including a10-index, coefficient of determination (R-2), root mean squared error (RMSE), mean absolute percentage error (MAPE), variance accounted for (VAF), and root squared error (RSE). The a10-index values for MLP, RF, SVM, HHO-MLP and WOA-MLP are 0.953, 0.933, 0.937, 0.991 and 0.972, respectively. R-2 of HHO-MLP is 0.998, which achieved the best performance among all five machine learning (ML) models. (C) 2021 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V.
引用
收藏
页码:1413 / 1427
页数:15
相关论文
共 50 条
  • [21] Financial Distress Prediction based on Multi-Layer Perceptron with Parameter Optimization
    Bannany, Magdi El
    Khedr, Ahmed M.
    Sreedharan, Meenu
    Kanakkayil, Sakeena
    IAENG International Journal of Computer Science, 2021, 48 (03) : 1 - 12
  • [22] Exploratory Test Oracle using Multi-Layer Perceptron Neural Network
    Makondo, Wellington
    Nallanthighal, Raghava
    Mapanga, Innocent
    Kadebu, Prudence
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 1166 - 1171
  • [23] Cluster Membership of Galaxies Using Multi-Layer Perceptron Neural Network
    Hashimoto, Yasuhiro
    Liu, Cheng-Han
    UNIVERSE, 2022, 8 (07)
  • [24] Carbonate texture identification using multi-layer perceptron neural network
    Fociro, Oltion
    Fociro, Ana
    Muci, Redi
    Skrame, Klodian
    Pekmezi, Jeton
    Mezini, Mario
    OPEN GEOSCIENCES, 2023, 15 (01):
  • [25] Human Gait Recognition using Neural Network Multi-Layer Perceptron
    Mohammed, Faisel Ghazi
    Eesee, Waleed Khaled
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (03): : 234 - 244
  • [26] Extraction of voltage harmonics using multi-layer perceptron neural network
    Tumay, Mehmet
    Meral, M. Emin
    Bayindir, K. Cagatay
    NEURAL COMPUTING & APPLICATIONS, 2008, 17 (5-6): : 585 - 593
  • [27] Multi-Layer Perceptron Based Spectrum Prediction in Cognitive Radio Network
    Amit Kumar Singh
    Rakesh Ranjan
    Wireless Personal Communications, 2022, 123 : 3539 - 3553
  • [28] Multi-Layer Perceptron Based Spectrum Prediction in Cognitive Radio Network
    Singh, Amit Kumar
    Ranjan, Rakesh
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 123 (04) : 3539 - 3553
  • [29] Manufacturing process modeling and optimization based on Multi-Layer Perceptron network
    Liao, TW
    Chen, LJ
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 1998, 120 (01): : 109 - 119
  • [30] A Novel Hunger Games Search Optimization-Based Artificial Neural Network for Predicting Ground Vibration Intensity Induced by Mine Blasting
    Hoang Nguyen
    Xuan-Nam Bui
    Natural Resources Research, 2021, 30 : 3865 - 3880