A Unifying Framework for Probabilistic Belief Revision

被引:0
|
作者
Zhuang, Zhiqiang [1 ]
Delgrande, James [2 ]
Nayak, Abhaya [3 ]
Sattar, Abdul [1 ]
机构
[1] Griffith Univ, Nathan, Qld, Australia
[2] Simon Fraser Univ, Burnaby, BC, Canada
[3] Macquarie Univ, Sydney, NSW, Australia
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
LOGIC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we provide a general, unifying framework for probabilistic belief revision. We first introduce a probabilistic logic called p-logic that is capable of representing and reasoning with basic probabilistic information. With p-logic as the background logic, we define a revision function called p-revision that resembles partial meet revision in the AGM framework. We provide a representation theorem for p-revision which shows that it can be characterised by the set of basic AGM revision postulates. P-revision represents an "all purpose" method for revising probabilistic information that can be used for, but not limited to, the revision problems behind Bayesian conditionalisation, Jeffrey conditionalisation, and Lewis's imaging. Importantly, p-revision subsumes the above three approaches indicating that Bayesian conditionalisation, Jeffrey conditionalisation, and Lewis' imaging all obey the basic principles of AGM revision. As well our investigation sheds light on the corresponding operation of AGM expansion in the probabilistic setting.
引用
收藏
页码:1370 / 1376
页数:7
相关论文
共 50 条
  • [21] A framework for multi-agent belief revision
    Liu W.
    Williams M.-A.
    [J]. Studia Logica, 2001, 67 (2) : 291 - 312
  • [22] A belief-desire framework for goal revision
    da Costa Pereira, Celia
    Tettamanzi, Andrea G. B.
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007, PT I, PROCEEDINGS, 2007, 4692 : 164 - +
  • [23] A unifying probabilistic framework for analyzing residual dipolar couplings
    Michael Habeck
    Michael Nilges
    Wolfgang Rieping
    [J]. Journal of Biomolecular NMR, 2008, 40 : 135 - 144
  • [24] Deep Probabilistic Logic: A Unifying Framework for Indirect Supervision
    Wang, Hai
    Poon, Hoifung
    [J]. 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 1891 - 1902
  • [25] A Unifying Probabilistic Framework for Partially Labeled Data Learning
    Gong, Xiuwen
    Yuan, Dong
    Bao, Wei
    Luo, Fulin
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (07) : 8036 - 8048
  • [26] A unifying probabilistic framework for analyzing residual dipolar couplings
    Habeck, Michael
    Nilges, Michael
    Rieping, Wolfgang
    [J]. JOURNAL OF BIOMOLECULAR NMR, 2008, 40 (02) : 135 - 144
  • [27] Belief revision in structured probabilistic argumentationModel and application to cyber security
    Paulo Shakarian
    Gerardo I. Simari
    Geoffrey Moores
    Damon Paulo
    Simon Parsons
    Marcelo A. Falappa
    Ashkan Aleali
    [J]. Annals of Mathematics and Artificial Intelligence, 2016, 78 : 259 - 301
  • [28] Probabilistic Belief Revision via Similarity of Worlds Modulo Evidence
    Rens, Gavin
    Meyer, Thomas
    Kern-Isberner, Gabriele
    Nayak, Abhaya
    [J]. KI 2018: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, 11117 : 343 - 356
  • [29] Modifications of uncertain data: A Bayesian framework for belief revision
    Dey, D
    Sarkar, S
    [J]. INFORMATION SYSTEMS RESEARCH, 2000, 11 (01) : 1 - 16
  • [30] An NMF-framework for Unifying Posterior Probabilistic Clustering and Probabilistic Latent Semantic Indexing
    Zhang, Zhong-Yuan
    Li, Tao
    Ding, Chris
    Tang, Jie
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (19) : 4011 - 4024