A Unifying Framework for Probabilistic Belief Revision

被引:0
|
作者
Zhuang, Zhiqiang [1 ]
Delgrande, James [2 ]
Nayak, Abhaya [3 ]
Sattar, Abdul [1 ]
机构
[1] Griffith Univ, Nathan, Qld, Australia
[2] Simon Fraser Univ, Burnaby, BC, Canada
[3] Macquarie Univ, Sydney, NSW, Australia
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
LOGIC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we provide a general, unifying framework for probabilistic belief revision. We first introduce a probabilistic logic called p-logic that is capable of representing and reasoning with basic probabilistic information. With p-logic as the background logic, we define a revision function called p-revision that resembles partial meet revision in the AGM framework. We provide a representation theorem for p-revision which shows that it can be characterised by the set of basic AGM revision postulates. P-revision represents an "all purpose" method for revising probabilistic information that can be used for, but not limited to, the revision problems behind Bayesian conditionalisation, Jeffrey conditionalisation, and Lewis's imaging. Importantly, p-revision subsumes the above three approaches indicating that Bayesian conditionalisation, Jeffrey conditionalisation, and Lewis' imaging all obey the basic principles of AGM revision. As well our investigation sheds light on the corresponding operation of AGM expansion in the probabilistic setting.
引用
收藏
页码:1370 / 1376
页数:7
相关论文
共 50 条
  • [1] UNIFYING DEFAULT REASONING AND BELIEF REVISION IN A MODAL FRAMEWORK
    BOUTILIER, C
    [J]. ARTIFICIAL INTELLIGENCE, 1994, 68 (01) : 33 - 85
  • [2] Probabilistic dynamic belief revision
    Baltag, Alexandru
    Smets, Sonja
    [J]. SYNTHESE, 2008, 165 (02) : 179 - 202
  • [3] Probabilistic dynamic belief revision
    Alexandru Baltag
    Sonja Smets
    [J]. Synthese, 2008, 165
  • [4] Probabilistic Belief Revision via Imaging
    Chhogyal, Kinzang
    Nayak, Abhaya
    Schwitter, Rolf
    Sattar, Abdul
    [J]. PRICAI 2014: TRENDS IN ARTIFICIAL INTELLIGENCE, 2014, 8862 : 694 - 707
  • [5] Fuzzy Probabilistic Belief Base Revision
    Lin, Yunguo
    Wang, Xiuli
    Hu, Shanli
    [J]. 2008 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM AND KNOWLEDGE ENGINEERING, VOLS 1 AND 2, 2008, : 450 - +
  • [6] A Model of Minimal Probabilistic Belief Revision
    Andrés Perea
    [J]. Theory and Decision, 2009, 67 : 163 - 222
  • [7] A Model of Minimal Probabilistic Belief Revision
    Perea, Andres
    [J]. THEORY AND DECISION, 2009, 67 (02) : 163 - 222
  • [8] ON PROBABILISTIC REPRESENTATION OF NON-PROBABILISTIC BELIEF REVISION
    LINDSTROM, S
    RABINOWICZ, W
    [J]. JOURNAL OF PHILOSOPHICAL LOGIC, 1989, 18 (01) : 69 - 101
  • [9] A unifying framework for probabilistic validation metrics
    Gardner, Paul
    Lord, Charles
    Barthorpe, Robert J.
    [J]. Journal of Verification, Validation and Uncertainty Quantification, 2019, 4 (03):
  • [10] Revision by comparison as a unifying framework: Severe withdrawal, irrevocable revision and irrefutable revision
    Rott, H
    [J]. THEORETICAL COMPUTER SCIENCE, 2006, 355 (02) : 228 - 242