Intelligent Bayesian classifiers in network intrusion detection

被引:0
|
作者
Bosin, A [1 ]
Dessì, N [1 ]
Pes, B [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, I-09124 Cagliari, Italy
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of this paper is to explore the effectiveness of Bayesian classifiers in intrusion detection (ID). Specifically, we provide an experimental study that focuses on comparing the accuracy of different classification models showing that the Bayesian classification approach is reasonably effective and efficient in predicting attacks and in exploiting the knowledge required by a computational intelligent ID process.
引用
收藏
页码:445 / 447
页数:3
相关论文
共 50 条
  • [31] Enhancing network intrusion detection classifiers using supervised adversarial training
    Chuanlong Yin
    Yuefei Zhu
    Shengli Liu
    Jinlong Fei
    Hetong Zhang
    [J]. The Journal of Supercomputing, 2020, 76 : 6690 - 6719
  • [32] Entropy clustering-based granular classifiers for network intrusion detection
    Liu, Hui
    Hao, Gang
    Xing, Bin
    [J]. EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)
  • [33] Ensemble of Classifiers Based Network Intrusion Detection System Performance Bound
    Mkuzangwe, Nenekazi N. P.
    Nelwamondo, Fulufhelo
    [J]. 2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2017, : 970 - 974
  • [34] Comparative study between Bayesian network and possibilistic network in intrusion detection
    Arfaoui, Najla
    Jemili, Farah
    Zaghdoud, Montaceur
    Ben Ahmed, Mohamed
    [J]. SECRYPT 2006: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, 2006, : 24 - +
  • [35] Novel and anomalous behavior detection using Bayesian network classifiers
    Benferhat, Salem
    Tabia, Karim
    [J]. SECRYPT 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, 2008, : 13 - 20
  • [36] Intrusion Detection System for MQTT Protocol Based on Intelligent One-Class Classifiers
    Jove, Esteban
    Aveleira-Mata, Jose
    Alaiz-Moreton, Hector
    Casteleiro-Roca, Jose-Luis
    Marcos del Blanco, David Yeregui
    Zayas-Gato, Francisco
    Quintian, Hector
    Luis Calvo-Rolle, Jose
    [J]. SUSTAINABLE SMART CITIES AND TERRITORIES, 2022, 253 : 249 - 260
  • [37] Boosted Bayesian network classifiers
    Jing, Yushi
    Pavlovic, Vladimir
    Rehg, James M.
    [J]. MACHINE LEARNING, 2008, 73 (02) : 155 - 184
  • [38] Approximate Bayesian network classifiers
    Slezak, D
    Wróblewski, J
    [J]. ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2002, 2475 : 365 - 372
  • [39] Adaptive Bayesian network classifiers
    Castillo, Gladys
    Gama, Joao
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (01) : 39 - 59
  • [40] Comparing Bayesian network classifiers
    Cheng, J
    Greiner, R
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1999, : 101 - 108