Noncommutative 2+1 dimensional Dirac oscillator and quantum phase transition

被引:7
|
作者
Hou, Yu-Long [1 ]
Wang, Qing [2 ]
Long, Zheng-Wen [3 ]
Jing, Jian [1 ]
机构
[1] Beijing Univ Chem Technol, Sch Sci, Dept Phys & Elect, Beijing 100029, Peoples R China
[2] Xinjiang Univ, Coll Phys Sci & Technol, Urumqi 830046, Peoples R China
[3] Guizhou Univ, Dept Phys, Lab Photoelect Technol & Applicat, Guiyang 550025, Peoples R China
关键词
Noncommutative space; Dirac oscillator; Quantum phase transition; MECHANICS; FIELD; QUANTIZATION; SYMMETRY; SPECTRUM; ALGEBRA; PLANE; SHIFT;
D O I
10.1016/j.aop.2014.12.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a charged Dirac oscillator on a noncommutative plane coupling to a uniform perpendicular magnetic field. We find that there is an exact map from this model onto a quantum optics model which contains both Anti-Jaynes-Cummings (AJC) and Jaynes-Cummings (JC) interactions simultaneously. And these two interactions compete each other when the dimensionless parameter kappa changes. Furthermore, this model behaves as a quantum phase transition when kappa crosses the critical point. However, different from the non-relativistic charged particles coupling to a uniform perpendicular with a harmonic oscillator potential on the noncommutative plane, we find that the critical point of this model is shifted from kappa = 0. And it also deviates from the critical point of its commutative counterpart because of spatial noncommutativity. Therefore, it may afford a method to detect the spatial noncommutativity experimentally. Finally, we investigate several characteristics of quantum phase transition. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 20
页数:11
相关论文
共 50 条
  • [21] The spin-orbit interaction in minimal length quantum mechanics; the case of a (2+1)-dimensional Dirac oscillator
    Zarrinkamar, S.
    Jahankohan, K.
    Hassanabadi, H.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2015, 93 (12) : 1638 - 1641
  • [22] Quantum effects in (2+1)-dimensional Dirac fermion and nodal superconductivity
    Morita, Y.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (07): : 2508 - 2512
  • [23] Oscillators in a (2+1)-dimensional noncommutative space
    Vega, F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (03)
  • [24] The (2+1)-dimensional f-deformed Dirac oscillator in the presence of an external field
    Setare, M. R.
    Majari, P.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (26):
  • [25] Noncommutative (2+1)-dimensional Anandan effects
    Jing, Jian
    Wang, Ya-Li
    Wang, Qing
    Kong, Ling-Bao
    Dong, Shi-Hai
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (28-29):
  • [26] On the q-deformed Dirac oscillator in (2+1)-dimensional space-time
    Chargui, Y.
    Dhahbi, A.
    [J]. ANNALS OF PHYSICS, 2021, 428
  • [27] TRANSITION AMPLITUDES IN 2+1 DIMENSIONAL QUANTUM-GRAVITY
    YAMADA, A
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1990, 84 (03): : 540 - 551
  • [28] Casimir effect in (2+1)-dimensional noncommutative theories
    Fosco, C. D.
    Moreno, G. A.
    [J]. PHYSICS LETTERS B, 2008, 659 (05) : 901 - 905
  • [29] The q-deformed Dirac oscillator in 2+1 dimensions
    Hatami, N.
    Setare, M. R.
    [J]. PHYSICS LETTERS A, 2016, 380 (42) : 3469 - 3472
  • [30] The eigenspectrum and hidden supersymmetry of the Dirac oscillator in 2+1 dimensions
    Ren, GX
    Ren, ZZ
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (31): : 5757 - 5765