Effectiveness assessment of Cyber-Physical Systems

被引:4
|
作者
Rocher, Gerald [1 ,2 ]
Tigli, Jean-Yves [2 ,3 ]
Lavirotte, Stephane [2 ,3 ]
Nhan Le Thanh [2 ,3 ]
机构
[1] GFI Informat, St Ouen, France
[2] UCA, Sophia Antipolis, France
[3] CNRS, Lab I3S, Sophia Antipolis, France
关键词
Cyber Physical Systems; Degree of effectiveness; Transferable Belief Model; Input/Output Hidden Markov Model; Zone of viability; TRANSFERABLE BELIEF MODEL; HIDDEN MARKOV-MODELS; COMBINATION; TAXONOMY; HMMS;
D O I
10.1016/j.ijar.2019.12.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
By achieving their purposes through interactions with the physical world, Cyber-Physical Systems (CPS) pose new challenges in terms of dependability. Indeed, the evolution of the physical systems they control with transducers can be affected by surrounding physical processes over which they have no control and which may potentially hamper the achievement of their purposes. While it is illusory to hope for a comprehensive model of the physical environment at design time to anticipate and remove faults that may occur once these systems are deployed, it becomes necessary to evaluate their degree of effectiveness in vivo. In this paper, the degree of effectiveness is formally defined and generalized in the context of the measure theory. The measure is developed in the context of the Transferable Belief Model (TBM), an elaboration on the Dempster-Shafer Theory (DST) of evidence so as to handle epistemic and aleatory uncertainties respectively pertaining the users' expectations and the natural variability of the physical environment. The TBM is used in conjunction with the Input/Output Hidden Markov Modeling framework we denote by Ev-IOHMM to specify the expected evolution of the physical system controlled by the CPS and the tolerances towards uncertainties. The measure of effectiveness is then obtained from the forward algorithm, leveraging the conflict entailed by the successive combinations of the beliefs obtained from observations of the physical system and the beliefs corresponding to its expected evolution. The proposed approach is applied to autonomous vehicles and shows how the degree of effectiveness can be used for bench-marking their controller relative to the highway code speed limitations and passengers' well-being constraints, both modeled through an Ev-IOHMM. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:112 / 132
页数:21
相关论文
共 50 条
  • [31] Medical Cyber-Physical Systems
    Sokolsky, Oleg
    18TH IEEE INTERNATIONAL CONFERENCE AND WORKSHOPS ON ENGINEERING OF COMPUTER BASED SYSTEMS (ECBS 2011), 2011, : 2 - 2
  • [32] Communication in Cyber-Physical Systems
    Mois, George
    Folea, Silviu
    Sanislav, Teodora
    Miclea, Liviu
    2015 19TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2015, : 303 - 307
  • [33] Engineering Cyber-Physical Systems
    Gruhn, Volker
    Gries, Stefan
    Hesenius, Marc
    Ollesch, Julius
    Ur Rehman, Shafiq
    Schwenzfeier, Nils
    Wahl, Christian
    Wessling, Florian
    NEW TRENDS IN INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES, 2017, 297 : 3 - 18
  • [34] Review on Cyber-physical Systems
    Liu, Yang
    Peng, Yu
    Wang, Bailing
    Yao, Sirui
    Liu, Zihe
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2017, 4 (01) : 27 - 40
  • [35] Survey of cyber-physical systems
    Li, Renfa
    Xie, Yong
    Li, Rui
    Li, Lang
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2012, 49 (06): : 1149 - 1161
  • [36] Cyber-Physical Systems – Security
    Tanja Zseby
    e & i Elektrotechnik und Informationstechnik, 2018, 135 (3) : 249 - 249
  • [37] Security in Cyber-Physical Systems
    Dsouza, Joanita
    Elezabeth, Laura
    Mishra, Ved Prakash
    Jain, Rachna
    PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 840 - 844
  • [38] Cyber-Physical Manufacturing Systems
    Tilbury, Dawn M.
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 2, 2019, 2 : 427 - 443
  • [39] Quantum cyber-physical systems
    Villalba-Diez, Javier
    Gonzalez-Marcos, Ana
    Ordieres-Mere, Joaquin
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] Quantum cyber-physical systems
    Javier Villalba-Diez
    Ana González-Marcos
    Joaquín Ordieres-Meré
    Scientific Reports, 12