Variable selection in uncertain regression analysis with imprecise observations

被引:6
|
作者
Liu, Zhe [1 ]
Yang, Xiangfeng [2 ]
机构
[1] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
[2] Univ Int Business & Econ, Sch Informat Technol & Management, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable selection; Uncertain regression analysis; Uncertain lasso estimate; De-biased uncertain lasso estimate; Imprecise observations;
D O I
10.1007/s00500-021-06129-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variable selection is crucial in order to better investigate relationships between variables in regression analysis. However, sometimes data are collected in an imprecise way and can not be described by random variables. As a result, classical variable selection methods are invalid. Characterizing these imprecise observations as uncertain variables, this paper presents the uncertain lasso estimate and the de-biased uncertain lasso estimate to select variables and estimate unknown parameters, respectively. Moreover, a way to choose the tuning parameter using cross-validation is suggested. Finally, numerical examples are documented to show our methods in detail.
引用
收藏
页码:13377 / 13387
页数:11
相关论文
共 50 条
  • [1] Variable selection in uncertain regression analysis with imprecise observations
    Zhe Liu
    Xiangfeng Yang
    [J]. Soft Computing, 2021, 25 : 13377 - 13387
  • [2] Uncertain regression analysis: an approach for imprecise observations
    Kai Yao
    Baoding Liu
    [J]. Soft Computing, 2018, 22 : 5579 - 5582
  • [3] Uncertain regression analysis: an approach for imprecise observations
    Yao, Kai
    Liu, Baoding
    [J]. SOFT COMPUTING, 2018, 22 (17) : 5579 - 5582
  • [4] Uncertain Weibull regression model with imprecise observations
    Zezhou Zou
    Bao Jiang
    Jian Li
    Waichon Lio
    [J]. Soft Computing, 2021, 25 : 2767 - 2775
  • [5] Multivariate uncertain regression model with imprecise observations
    Ye, Tingqing
    Liu, Yuhan
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (11) : 4941 - 4950
  • [6] Uncertain Gompertz regression model with imprecise observations
    Zeyu Hu
    Jinwu Gao
    [J]. Soft Computing, 2020, 24 : 2543 - 2549
  • [7] Multivariate uncertain regression model with imprecise observations
    Tingqing Ye
    Yuhan Liu
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 4941 - 4950
  • [8] Uncertain Gompertz regression model with imprecise observations
    Hu, Zeyu
    Gao, Jinwu
    [J]. SOFT COMPUTING, 2020, 24 (04) : 2543 - 2549
  • [9] Uncertain Weibull regression model with imprecise observations
    Zou, Zezhou
    Jiang, Bao
    Li, Jian
    Lio, Waichon
    [J]. SOFT COMPUTING, 2021, 25 (04) : 2767 - 2775
  • [10] Uncertain support vector regression with imprecise observations
    Li, Qiqi
    Qin, Zhongfeng
    Liu, Zhe
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 3403 - 3409