Multivariate uncertain regression model with imprecise observations

被引:0
|
作者
Tingqing Ye
Yuhan Liu
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] University of Cincinnati,Department of Mathematical Sciences
关键词
Multivariate uncertain regression; Uncertainty theory; Parameter estimation; Residual; Confidence interval;
D O I
暂无
中图分类号
学科分类号
摘要
The multivariate regression model is a mathematical tool for estimating the relationships among some explanatory variables and some response variables. In some cases, observed data are imprecise. In order to model those imprecise data, we can employ uncertainty theory to design the uncertain regression model by regarding those data as uncertain variables. Parameters estimation is an important topic in the uncertain regression model. In this paper, we explore a method of parameters estimation by the principle of least squares in the multivariate uncertain regression model containing more than one response variables and assuming both explanatory variables and response variables as uncertain variables. Besides, when the new explanatory variables are given, we propose an approach to obtain the forecast value and the confidence interval of the response variables. At last, a numerical example of the multivariate uncertain regression model is showed.
引用
收藏
页码:4941 / 4950
页数:9
相关论文
共 50 条
  • [1] Multivariate uncertain regression model with imprecise observations
    Ye, Tingqing
    Liu, Yuhan
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (11) : 4941 - 4950
  • [2] Uncertain Weibull regression model with imprecise observations
    Zezhou Zou
    Bao Jiang
    Jian Li
    Waichon Lio
    [J]. Soft Computing, 2021, 25 : 2767 - 2775
  • [3] Uncertain Gompertz regression model with imprecise observations
    Zeyu Hu
    Jinwu Gao
    [J]. Soft Computing, 2020, 24 : 2543 - 2549
  • [4] Uncertain Gompertz regression model with imprecise observations
    Hu, Zeyu
    Gao, Jinwu
    [J]. SOFT COMPUTING, 2020, 24 (04) : 2543 - 2549
  • [5] Uncertain Weibull regression model with imprecise observations
    Zou, Zezhou
    Jiang, Bao
    Li, Jian
    Lio, Waichon
    [J]. SOFT COMPUTING, 2021, 25 (04) : 2767 - 2775
  • [6] Residual and confidence interval for uncertain regression model with imprecise observations
    Lio, Waichon
    Liu, Baoding
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (02) : 2573 - 2583
  • [7] Uncertain regression analysis: an approach for imprecise observations
    Kai Yao
    Baoding Liu
    [J]. Soft Computing, 2018, 22 : 5579 - 5582
  • [8] Tukey's biweight estimation for uncertain regression model with imprecise observations
    Chen, Dan
    [J]. SOFT COMPUTING, 2020, 24 (22) : 16803 - 16809
  • [9] Uncertain regression analysis: an approach for imprecise observations
    Yao, Kai
    Liu, Baoding
    [J]. SOFT COMPUTING, 2018, 22 (17) : 5579 - 5582
  • [10] Uncertain support vector regression with imprecise observations
    Li, Qiqi
    Qin, Zhongfeng
    Liu, Zhe
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 3403 - 3409