Finger-vein Images Dual Contrast Enhancement and Edge Detection

被引:0
|
作者
Baloch, Noroz Khan [1 ]
Bhutto, Zuhaibuddin [2 ]
Chan, Abdul Sattar [3 ]
Memon, Mudasar Latif [4 ]
Saleem, Kashif [1 ]
Shaikh, Murtaza Hussain [5 ]
Ahmed, Saleem [1 ]
机构
[1] Dawood Univ Engn & Technol, Karachi, Pakistan
[2] Balochistan Univ Engn & Technol, Dept Comp Syst Engn, Khuzdar, Pakistan
[3] Sukkur IBA Univ, Eletr Engn Dept, Sukkur, Pakistan
[4] Sukkur IBA Univ, IBA Community Coll Naushehro Feroze, Sukkur, Pakistan
[5] Kyungsung Univ, Dept Comp Syst Engn, Busan, South Korea
关键词
Finger-veins; dual contrast limited adaptive histogram equalization; Otsu algorithm; edge detection; FINGER VEIN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel scheme to get a pattern of Finger Veins from the original image. The central point of this paper is how to extract Finger-vein ridges from the background surface. For this purpose, we implement dual contrast limited adaptive histogram equalization (DCLAHE) method, which is used for enhancing the grayscale color intensity values. After improving the image contrast, we apply an Otsu thresholding algorithm in canny edge detection to obtain optimal edges for a Finger-vein. Investigational end results show a precise binary representation of the vein pattern.
引用
收藏
页码:184 / 192
页数:9
相关论文
共 50 条
  • [21] Multi-Channel Gabor Filter Design for Finger-vein Image Enhancement
    Yang, Jinfeng
    Yang, Jinli
    [J]. PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS (ICIG 2009), 2009, : 87 - 91
  • [22] Iterated graph cut method for automatic and accurate segmentation of finger-vein images
    Lei Lei
    Feng Xi
    Shengyao Chen
    Zhong Liu
    [J]. Applied Intelligence, 2021, 51 : 673 - 689
  • [23] Performance comparison of illumination methods for finger-vein imaging and liveness detection
    Jaekwon Lee
    Juhun Lim
    Seunghwan Moon
    Yangkyu Park
    Kwanghyun Kim
    Sang-Jin Lee
    Jong-Hyun Lee
    [J]. Microsystem Technologies, 2018, 24 : 4955 - 4964
  • [24] Iterated graph cut method for automatic and accurate segmentation of finger-vein images
    Lei, Lei
    Xi, Feng
    Chen, Shengyao
    Liu, Zhong
    [J]. APPLIED INTELLIGENCE, 2021, 51 (02) : 673 - 689
  • [25] Fake finger-vein image detection based on Fourier and wavelet transforms
    Dat Tien Nguyen
    Park, Young Ho
    Shin, Kwang Yong
    Kwon, Seung Yong
    Lee, Hyeon Chang
    Park, Kang Ryoung
    [J]. DIGITAL SIGNAL PROCESSING, 2013, 23 (05) : 1401 - 1413
  • [26] Spoof Detection for Finger-Vein Recognition System Using NIR Camera
    Dat Tien Nguyen
    Yoon, Hyo Sik
    Tuyen Danh Pham
    Park, Kang Ryoung
    [J]. SENSORS, 2017, 17 (10)
  • [27] Performance comparison of illumination methods for finger-vein imaging and liveness detection
    Lee, Jaekwon
    Lim, Juhun
    Moon, Seunghwan
    Park, Yangkyu
    Kim, Kwanghyun
    Lee, Sang-Jin
    Lee, Jong-Hyun
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2018, 24 (12): : 4955 - 4964
  • [28] Finger-Vein as a Biometric-Based Authentication
    Liu, Chun-Yu
    Ruan, Shanq-Jang
    Lai, Yu-Ren
    Yao, Chih-Yuan
    [J]. IEEE CONSUMER ELECTRONICS MAGAZINE, 2019, 8 (06) : 29 - 34
  • [29] Sensor Ageing Impact on Finger-Vein Recognition
    Kauba, Christof
    Uhl, Andreas
    [J]. 2015 INTERNATIONAL CONFERENCE ON BIOMETRICS (ICB), 2015, : 113 - 120
  • [30] Research and implementation of finger-vein recognition algorithm
    Pang Zengyao
    Yang, Jie
    Chen, Yilei
    Liu, Ying
    [J]. SECOND INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2017, 10443