Landing Zone Identification for Autonomous UAV Applications Using Fused Hyperspectral Imagery and LIDAR Point Clouds

被引:0
|
作者
Lane, Sarah [1 ]
Kira, Zsolt [2 ]
James, Ryan [1 ]
Carr, Domenic [1 ]
Tuell, Grady [3 ]
机构
[1] Georgia Tech Res Inst, Electroopt Syst Lab, 925 Dalney St, Atlanta, GA 30332 USA
[2] Georgia Tech Res Inst, Aerosp Transportat & Adv Syst Lab, 250 14th St, Atlanta, GA 30332 USA
[3] 3D Ideas LLC, 651 North Main St, Madison, GA 30650 USA
关键词
multi-modal data fusion; hyperspectral imagery; LIDAR; autonomous UAV;
D O I
10.1117/12.2305136
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Multi-modal data fusion for situational awareness is of interest because fusion of data can provide more information than the individual modalities alone. However, many questions remain, including what data is beneficial, what algorithms work the best or are fastest, and where in the processing pipeline should data be fused? In this paper, we explore some of these questions through a processing pipeline designed for multi-modal data fusion in an autonomous UAV landing scenario. In this paper, we assess landing zone identification methods using two data modalities: hyperspectral imagery and LIDAR point clouds. Using hyperspectral image and LIDAR data from two datasets of Maui and a university campus, we assess the accuracies of different landing zone identification methods, compare rule-based and machine learning based classifications, and show that depending on the dataset, fusion does not always increase performance. However, we show that machine learning methods can be used to ascertain the usefulness of individual modalities and their resulting attributes when used to perform classification.
引用
收藏
页数:12
相关论文
共 41 条
  • [11] Cluster-Based Wall Curvature Detection and Parameterization for Autonomous Racing using LiDAR Point Clouds
    Meyer, Stephanie W.
    Bevly, David M.
    IFAC PAPERSONLINE, 2022, 55 (37): : 494 - 499
  • [12] Real-Time Road Curb and Lane Detection for Autonomous Driving Using LiDAR Point Clouds
    Huang, Jing
    Choudhury, Pallab K.
    Yin, Song
    Zhu, Lingyun
    IEEE ACCESS, 2021, 9 : 144940 - 144951
  • [13] Detection of Individual Trees in UAV LiDAR Point Clouds Using a Deep Learning Framework Based on Multichannel Representation
    Luo, Zhipeng
    Zhang, Ziyue
    Li, Wen
    Chen, Yiping
    Wang, Cheng
    Nurunnabi, Abdul Awal Md
    Li, Jonathan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [14] A Comparison of UAV-Derived Dense Point Clouds Using LiDAR and NIR Photogrammetry in an Australian Eucalypt Forest
    Winsen, Megan
    Hamilton, Grant
    REMOTE SENSING, 2023, 15 (06)
  • [15] Systematic and Comprehensive Review of Clustering and Multi-Target Tracking Techniques for LiDAR Point Clouds in Autonomous Driving Applications
    Adnan, Muhammad
    Slavic, Giulia
    Gomez, David Martin
    Marcenaro, Lucio
    Regazzoni, Carlo
    SENSORS, 2023, 23 (13)
  • [16] Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery
    L. Comba
    A. Biglia
    D. Ricauda Aimonino
    C. Tortia
    E. Mania
    S. Guidoni
    P. Gay
    Precision Agriculture, 2020, 21 : 881 - 896
  • [17] Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery
    Comba, L.
    Biglia, A.
    Aimonino, D. Ricauda
    Tortia, C.
    Mania, E.
    Guidoni, S.
    Gay, P.
    PRECISION AGRICULTURE, 2020, 21 (04) : 881 - 896
  • [18] Improved Leaf Area Index Retrieval Using 3-D Point Clouds From UAV Imagery
    Xing, Minfeng
    Yang, Jie
    Song, Yang
    Shang, Jiali
    Zhou, Xin
    Wang, Jinfei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [19] Detection of radioactive waste sites in the Chornobyl exclusion zone using UAV-based lidar data and multispectral imagery
    Briechle, S.
    Molitor, N.
    Krzystek, P.
    Vosselman, G.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 167 : 345 - 362
  • [20] Individual Tree Canopy Parameters Estimation Using UAV-Based Photogrammetric and LiDAR Point Clouds in an Urban Park
    Ghanbari Parmehr, Ebadat
    Amati, Marco
    REMOTE SENSING, 2021, 13 (11)