Hybrid of ARIMA and SVMs for Short-Term Load Forecasting

被引:162
|
作者
Nie, Hongzhan [1 ]
Liu, Guohui [1 ]
Liu, Xiaoman [1 ]
Wang, Yong [2 ]
机构
[1] NE Dianli Univ, Sch Elect Engn, Jilin, Jilin, Peoples R China
[2] Northeast China Grid Co Ltd, Changchun Extrahigh Voltage Bur, Changchun, Peoples R China
关键词
short-term load forecasting; ARIMA model; SVMs model; hybrid ARIMA-SVMs model;
D O I
10.1016/j.egypro.2012.01.229
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Short-term load is a variable affected by many factors. It is difficult to forecast accurately with a single model. Taking advantage of the autoregressive integrated moving average (ARIMA) to forecast the linear basic part of load and of the support vector machines (SVMs) to forecast the non-linear sensitive part of load, a method based on hybrid model of ARIMA and SVMs is presented in this paper. It firstly uses ARIMA to forecast the daily load, and then uses SVMs, which is known for the great power to learn and generalize, to correct the deviation of former forecasting. Applying this hybrid model to a large sample prediction, the results show that it achieves the forecasting accuracy and has very good prospective in applications. So it can be used as a new load forecasting method. (C) 2011 Published by Elsevier B. V. Selection and/or peer-review under responsibility of International Materials Science Society.
引用
收藏
页码:1455 / 1460
页数:6
相关论文
共 50 条
  • [21] Short-Term Load Forecasting Using Hybrid Neural Network
    Nadeem, Muhammad
    Altaf, Muhammad
    Ahmad, Ayaz
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2021, 12 (01) : 142 - 156
  • [22] A Hybrid Method for Short-term Load Forecasting in Power System
    Zhu, Xianghe
    Qi, Huan
    Huang, Xuncheng
    Sun, Suqin
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 696 - 699
  • [23] A hybrid fuzzy modeling method for short-term load forecasting
    Mastorocostas, PA
    Theocharis, JB
    Kiartzis, SJ
    Bakirtzis, AG
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2000, 51 (3-4) : 221 - 232
  • [24] Hybrid neural network model for short-term load forecasting
    Yin, Chengqun
    Kang, Lifeng
    Sun, Wei
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, : 408 - +
  • [25] A Hybrid Stacking Model for Enhanced Short-Term Load Forecasting
    Guo, Fusen
    Mo, Huadong
    Wu, Jianzhang
    Pan, Lei
    Zhou, Hailing
    Zhang, Zhibo
    Li, Lin
    Huang, Fengling
    ELECTRONICS, 2024, 13 (14)
  • [26] A Novel Hybrid Method for Short-Term Power Load Forecasting
    Huang Yuansheng
    Huang Shenhai
    Song Jiayin
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2016, 2016
  • [27] Intelligent Hybrid Wavelet Models for Short-Term Load Forecasting
    Pandey, Ajay Shekhar
    Singh, Devender
    Sinha, Sunil Kumar
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (03) : 1266 - 1273
  • [28] Short-term load forecasting based on an adaptive hybrid method
    Fan, S
    Chen, LN
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (01) : 392 - 401
  • [29] Research on hybrid ARIMA and support vector machine model in short term load forecasting
    He, Yujun
    Zhu, Youchan
    Duan, Dongxing
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 804 - 808
  • [30] Based on time sequence of ARIMA model in the application of short-term electricity load forecasting
    Li Wei
    Zhang Zhen-gang
    2009 INTERNATIONAL CONFERENCE ON RESEARCH CHALLENGES IN COMPUTER SCIENCE, ICRCCS 2009, 2009, : 11 - 14