Finite Gorenstein representation type implies simple singularity

被引:34
|
作者
Christensen, Lars Winther [2 ]
Piepmeyer, Greg [1 ]
Striuli, Janet [1 ]
Takahashi, Ryo [3 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
[2] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
[3] Shinshu Univ, Fac Sci, Dept Mat Sci, Nagano 3908621, Japan
基金
美国国家科学基金会;
关键词
approximations; Cohen-Macaulay representation type; covers; Gorenstein dimension; precovers; simple singularity; totally reflexive modules;
D O I
10.1016/j.aim.2008.03.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative noetherian local ring and consider the set of isomorphism classes of indecomposable totally reflexive R-modules. We prove that if this set is finite, then either it has exactly one element, represented by the rank 1 free module, or R is Gorenstein and an isolated singularity (if R is complete, then it is even a simple hypersurface singularity). The crux of our proof is to argue that if the residue field has a totally reflexive cover, then R is Gorenstein or every totally reflexive R-module is free. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1012 / 1026
页数:15
相关论文
共 50 条