Functional data analysis for sparse longitudinal data

被引:1032
|
作者
Yao, F [1 ]
Müller, HG
Wang, JL
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[2] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
asymptotics; conditioning; confidence band; measurement error; principal components; simultaneous inferences; smoothing;
D O I
10.1198/016214504000001745
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a nonparametric method to perform functional principal components analysis for the case of sparse longitudinal data. The method aims at irregularly spaced longitudinal data, where the number of repeated measurements available per subject is small. In contrast, classical functional data analysis requires a large number of regularly spaced measurements per subject. We assume that the repeated measurements are located randomly with a random number of repetitions for each subject and are determined by an underlying smooth random (subject-specific) trajectory plus measurement errors. Basic elements of our approach are the parsimonious estimation of the covariance structure and mean function of the trajectories, and the estimation of the variance of the measurement errors. The eigenfunction basis is estimated from the data, and functional principal components score estimates are obtained by a conditioning step. This conditional estimation method is conceptually simple and straightforward to implement. A key step is the derivation of asymptotic consistency and distribution results under mild conditions, using tools from functional analysis. Functional data analysis for sparse longitudinal data enables prediction of individual smooth trajectories even if only one or few measurements are available for a subject. Asymptotic pointwise and simultaneous confidence bands are obtained for predicted individual trajectories, based on asymptotic distributions, for simultaneous bands under the assumption of a finite number of components. Model selection techniques, such as the Akaike information criterion, are used to choose the model dimension corresponding to the number of eigenfunctions in the model. The methods are illustrated with a simulation study, longitudinal CD4 data for a sample of AIDS patients, and time-course gene expression data for the yeast cell cycle.
引用
收藏
页码:577 / 590
页数:14
相关论文
共 50 条
  • [1] INTRINSIC RIEMANNIAN FUNCTIONAL DATA ANALYSIS FOR SPARSE LONGITUDINAL OBSERVATIONS
    Shao, Lingxuan
    Lin, Zhenhua
    Yao, Fang
    [J]. ANNALS OF STATISTICS, 2022, 50 (03): : 1696 - 1721
  • [2] Robust functional principal components for sparse longitudinal data
    Boente, Graciela
    Salibian-Barrera, Matias
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (02): : 159 - 188
  • [3] Robust functional principal components for sparse longitudinal data
    Graciela Boente
    Matías Salibián-Barrera
    [J]. METRON, 2021, 79 : 159 - 188
  • [4] The functional data analysis view of longitudinal data
    Zhao, X
    Marron, JS
    Wells, MT
    [J]. STATISTICA SINICA, 2004, 14 (03) : 789 - 808
  • [5] Longitudinal functional data analysis
    Park, So Young
    Staicu, Ana-Maria
    [J]. STAT, 2015, 4 (01): : 212 - 226
  • [6] Regression analysis of sparse asynchronous longitudinal data
    Cao, Hongyuan
    Zeng, Donglin
    Fine, Jason P.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (04) : 755 - 776
  • [7] A unified model specification for sparse and dense functional/longitudinal data
    Hu, Lixia
    Rui, Gao
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [8] Recent history functional linear models for sparse longitudinal data
    Kim, Kion
    Sentuerk, Damla
    Li, Runze
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1554 - 1566
  • [9] CAUSAL MEDIATION ANALYSIS FOR SPARSE AND IRREGULAR LONGITUDINAL DATA
    Zeng, Shuxi
    Rosenbaum, Stacy
    Alberts, Susan C.
    Archie, Elizabeth A.
    Li, Fan
    [J]. ANNALS OF APPLIED STATISTICS, 2021, 15 (02): : 747 - 767
  • [10] Simultaneous nonparametric regression analysis of sparse longitudinal data
    Cao, Hongyuan
    Liu, Weidong
    Zhou, Zhou
    [J]. BERNOULLI, 2018, 24 (4A) : 3013 - 3038