Regression analysis of sparse asynchronous longitudinal data

被引:14
|
作者
Cao, Hongyuan [1 ]
Zeng, Donglin [2 ]
Fine, Jason P. [2 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Univ N Carolina, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Asynchronous longitudinal data; Convergence rates; Generalized linear regression; Kernel-weighted estimation; Temporal smoothness; VARYING-COEFFICIENT MODELS; SPLINE ESTIMATION; LINEAR-MODELS; INFERENCE;
D O I
10.1111/rssb.12086
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.
引用
收藏
页码:755 / 776
页数:22
相关论文
共 50 条
  • [1] Regression Analysis of Asynchronous Longitudinal Functional and Scalar Data
    Li, Ting
    Li, Tengfei
    Zhu, Zhongyi
    Zhu, Hongtu
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1228 - 1242
  • [2] Regression analysis of longitudinal data with mixed synchronous and asynchronous longitudinal covariates
    Sun, Zhuowei
    Cao, Hongyuan
    Chen, Li
    Fine, Jason P.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 231
  • [3] Simultaneous nonparametric regression analysis of sparse longitudinal data
    Cao, Hongyuan
    Liu, Weidong
    Zhou, Zhou
    [J]. BERNOULLI, 2018, 24 (4A) : 3013 - 3038
  • [4] Regression analysis of asynchronous longitudinal data with informative observation processes
    Sun, Dayu
    Zhao, Hui
    Sun, Jianguo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 157
  • [5] Regression analysis of asynchronous longitudinal data with informative dropout and dependent observation
    Sun, Zhuowei
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [6] Functional data analysis for sparse longitudinal data
    Yao, F
    Müller, HG
    Wang, JL
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 577 - 590
  • [7] On last observation carried forward and asynchronous longitudinal regression analysis
    Cao, Hongyuan
    Li, Jialiang
    Fine, Jason P.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1155 - 1180
  • [8] Nonparametric regression analysis of longitudinal data
    Staniswalis, JG
    Lee, JJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (444) : 1403 - 1418
  • [9] Regression analysis of additive hazards model with sparse longitudinal covariates
    Zhuowei Sun
    Hongyuan Cao
    Li Chen
    [J]. Lifetime Data Analysis, 2022, 28 : 263 - 281
  • [10] Regression analysis of additive hazards model with sparse longitudinal covariates
    Sun, Zhuowei
    Cao, Hongyuan
    Chen, Li
    [J]. LIFETIME DATA ANALYSIS, 2022, 28 (02) : 263 - 281