Approximations for subset interconnection designs

被引:0
|
作者
Dua, XF
Wu, WL [1 ]
Kelley, DF
机构
[1] Univ Minnesota, Dept Comp Sci, Minneapolis, MN 55455 USA
[2] Qiqihar Teachers Coll, Dept Math, Minneapolis, MN 55455 USA
关键词
subset interconnection; approximation; performance ratio;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a complete weighted graph on vertex set X and subsets X-1,...,X-m of X, we consider the problem of finding a minimum total weight subgraph G such that for every i = 1,...,m, G contains a spanning tree for Xi. The NP-hardness of this problem was established in 1985 under Ronald V. Book's supervision. In this note, we present some results about its polynomial-time approximation. (C) 1998 Published by Elsevier Science B.V. AII rights reserved.
引用
收藏
页码:171 / 180
页数:10
相关论文
共 50 条
  • [1] ON COMPLEXITY OF SUBSET INTERCONNECTION DESIGNS
    DU, DZ
    KELLEY, DF
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1995, 6 (02) : 193 - 205
  • [2] A special case for subset interconnection designs
    Du, DZ
    Gao, B
    Wu, WL
    [J]. DISCRETE APPLIED MATHEMATICS, 1997, 78 (1-3) : 51 - 60
  • [3] Comparisons of augmented pairs designs and subset designs
    Ahmad, Tanvir
    Gilmour, Steven G.
    Arshad, Hafiz Muhammad
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (07) : 1898 - 1921
  • [4] 2 ALGORITHMS FOR THE SUBSET INTERCONNECTION DESIGN PROBLEM
    PRISNER, E
    [J]. NETWORKS, 1992, 22 (04) : 385 - 395
  • [5] Fault tolerance designs of interconnection networks
    Nadeem, Muhammad Faisal
    Imran, Muhammad
    Afzal Siddiqui, Hafiz Muhammad
    Azeem, Muhammad
    [J]. PEER-TO-PEER NETWORKING AND APPLICATIONS, 2023, 16 (02) : 1125 - 1134
  • [6] Fault tolerance designs of interconnection networks
    Muhammad Faisal Nadeem
    Muhammad Imran
    Hafiz Muhammad Afzal Siddiqui
    Muhammad Azeem
    [J]. Peer-to-Peer Networking and Applications, 2023, 16 : 1125 - 1134
  • [7] ARBITER DESIGNS FOR MULTIPROCESSOR INTERCONNECTION NETWORKS
    MUPPALA, JK
    BHUYAN, LN
    [J]. MICROPROCESSING AND MICROPROGRAMMING, 1989, 26 (01): : 31 - 43
  • [8] Generalized Subset Designs in Analytical Chemistry
    Surowiec, Izabella
    Vikstrom, Ludvig
    Hector, Gustaf
    Johansson, Erik
    Vikstrom, Conny
    Trygg, Johan
    [J]. ANALYTICAL CHEMISTRY, 2017, 89 (12) : 6491 - 6497
  • [9] AN ANALYSIS OF SUBSET REGRESSION FOR ORTHOGONAL DESIGNS
    PINAULT, SC
    [J]. AMERICAN STATISTICIAN, 1988, 42 (04): : 275 - 277
  • [10] Space-Efficient Approximations for Subset Sum
    Gal, Anna
    Jang, Jing-Tang
    Limaye, Nutan
    Mahajan, Meena
    Sreenivasaiah, Karteek
    [J]. ACM TRANSACTIONS ON COMPUTATION THEORY, 2016, 8 (04)