2 ALGORITHMS FOR THE SUBSET INTERCONNECTION DESIGN PROBLEM

被引:4
|
作者
PRISNER, E
机构
[1] Diskrete Strukturen in der Mathematik, Universität Bielefeld, Bielefeld
关键词
D O I
10.1002/net.3230220406
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
An NP-complete generalization of the minimum spanning tree problem is considered. Given are a set of V, a cost function c: V x V --> R+, and a collection {X1 ,..., X(m)} of subsets of V. A graph G with vertex set V is called feasible if every X(i) induces a connected subgraph of G. The minimum subset interconnection design problem is to find a feasible graph with a minimum cost sum. In this paper, two heuristic algorithms for the problem are given and analyzed. Several classes of input data for which one of the algorithms finds optimal or at least approximative solutions are presented.
引用
收藏
页码:385 / 395
页数:11
相关论文
共 50 条
  • [1] Effective and Efficient Data Reduction for the Subset Interconnection Design Problem
    Chen, Jiehua
    Komusiewicz, Christian
    Niedermeier, Rolf
    Sorge, Manuel
    Suchy, Ondrej
    Weller, Mathias
    [J]. ALGORITHMS AND COMPUTATION, 2013, 8283 : 361 - 371
  • [2] POLYNOMIAL-TIME DATA REDUCTION FOR THE SUBSET INTERCONNECTION DESIGN PROBLEM
    Chen, Jiehua
    Komusiewicz, Christian
    Niedermeier, Rolf
    Sorge, Manuel
    Suchy, Ondrej
    Weller, Mathias
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 1 - 25
  • [3] Algorithms and implementation for interconnection graph problem
    Fan, Hongbing
    Hundt, Christian
    Wu, Yu-Liang
    Ernst, Jason
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2008, 5165 : 201 - +
  • [4] Priority algorithms for the subset-sum problem
    Yuli Ye
    Allan Borodin
    [J]. Journal of Combinatorial Optimization, 2008, 16 : 198 - 228
  • [5] Priority algorithms for the subset-sum problem
    Ye, Yuli
    Borodin, Allan
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 16 (03) : 198 - 228
  • [6] Priority algorithms for the Subset-Sum problem
    Ye, Yuli
    Borodin, Allan
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2007, 4598 : 504 - +
  • [7] Quantum Algorithms for the Subset-Sum Problem
    Bernstein, Daniel J.
    Jeffery, Stacey
    Lange, Tanja
    Meurer, Alexander
    [J]. POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2013, 2013, 7932 : 16 - 33
  • [8] ON COMPLEXITY OF SUBSET INTERCONNECTION DESIGNS
    DU, DZ
    KELLEY, DF
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1995, 6 (02) : 193 - 205
  • [9] Evolution of interconnection networks: The impact on the design of parallel algorithms
    Ni, LM
    [J]. I-SPAN 2004: 7TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND NETWORKS, PROCEEDINGS, 2004, : 3 - 3
  • [10] Approximations for subset interconnection designs
    Dua, XF
    Wu, WL
    Kelley, DF
    [J]. THEORETICAL COMPUTER SCIENCE, 1998, 207 (01) : 171 - 180