Embodied VR environment facilitates motor imagery brain-computer interface training

被引:42
|
作者
Skola, Filip [1 ]
Liarokapis, Fotis [1 ]
机构
[1] Masaryk Univ, Fac Informat, Bot 68a, Brno, Czech Republic
来源
COMPUTERS & GRAPHICS-UK | 2018年 / 75卷
关键词
Motor imagery; Brain-Computer interfaces; Virtual reality; Embodiment; Rubber hand illusion; Body transfer illusion; BODY OWNERSHIP ILLUSION; RUBBER HAND ILLUSION; SINGLE-TRIAL EEG; ILLUSORY OWNERSHIP; VIRTUAL BODY; COMMUNICATION; FEEDBACK; VISUOTACTILE; REAL; TIME;
D O I
10.1016/j.cag.2018.05.024
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Motor imagery (MI) is the predominant control paradigm for brain-computer interfaces (BCIs). After sufficient effort is invested to the training, the accuracy of commands mediated by mental imagery of bodily movements grows to a satisfactory level. However, many issues with the MI-BCIs persist; e.g., low bit transfer rate, BCI illiteracy, sub-optimal training procedure. Especially the training process for the MI-BCIs requires improvements. Currently, the training has an inappropriate form, resulting in a high mental and temporal demand on the users (weeks of training are required for the control). This study aims at addressing the issues with the MI-BCI training. To support the learning process, an embodied training environment was created. Participants were placed into a virtual reality environment observed from a first-person view of a human-like avatar, and their rehearsal of MI actions was reflected by the corresponding movements performed by the avatar. Leveraging extension of the sense of ownership, agency, and self-location towards a non-body object (principles known from the rubber hand illusion and the body transfer illusions) has already been proven to help in producing stronger EEG correlates of Ml. These principles were used to facilitate the MI-BCI training process for the first time. Performance of 30 healthy participants after two sessions of training was measured using an on-line BCI scenario. The group trained using our embodied VR environment gained significantly higher average accuracy for BCI actions (58.3%) than the control group, trained with a standard MI-BCI training protocol (52.9%). (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 50 条
  • [31] Feature Extraction of Brain-Computer Interface Electroencephalogram Based on Motor Imagery
    Shi, Tianwei
    Ren, Ling
    Cui, Wenhua
    IEEE SENSORS JOURNAL, 2020, 20 (20) : 11787 - 11794
  • [32] A Predictive Speller Controlled by a Brain-Computer Interface Based on Motor Imagery
    D'Albis, Tiziano
    Blatt, Rossella
    Tedesco, Roberto
    Sbattella, Licia
    Matteucci, Matteo
    ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION, 2012, 19 (03)
  • [33] Design of a Robotic Wheelchair with a Motor Imagery based Brain-Computer Interface
    Kim, Keun-Tae
    Carlson, Tom
    Lee, Seong-Whan
    2013 IEEE INTERNATIONAL WINTER WORKSHOP ON BRAIN-COMPUTER INTERFACE (BCI), 2013, : 46 - 48
  • [34] A Novel Classification Method for Motor Imagery Based on Brain-Computer Interface
    Chen, Chih-Yu
    Wu, Chun-Wei
    Lin, Chin-Teng
    Chen, Shi-An
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 4099 - 4102
  • [35] Classification of motor imagery tasks for electrocorticogram based brain-computer interface
    Xu F.
    Zhou W.
    Zhen Y.
    Yuan Q.
    Zhou, W. (wdzhou@sdu.edu.cn), 1600, Springer Verlag (04): : 149 - 157
  • [36] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [37] Development of a Wearable Motor-Imagery-Based Brain-Computer Interface
    Lin, Bor-Shing
    Pan, Jeng-Shyang
    Chu, Tso-Yao
    Lin, Bor-Shyh
    JOURNAL OF MEDICAL SYSTEMS, 2016, 40 (03) : 1 - 8
  • [38] Discrimination of Rest, Motor Imagery and Movement for Brain-Computer Interface Applications
    Ozturk, Nedime
    Yilmaz, Bulent
    2018 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2018,
  • [39] Asynchronous Motor Imagery Brain-Computer Interface for Simulated Drone Control
    Choi, Jin Woo
    Kim, Byung Hyung
    Jo, Sungho
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 133 - 137
  • [40] MOTOR IMAGERY OF LOWER LIMBS MOVEMENTS TO CONTROL BRAIN-COMPUTER INTERFACE
    Bobrova, E. V.
    Reshetnikova, V. V.
    Frolov, A. A.
    Gerasimenko, Y. P.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2019, 69 (05) : 529 - 540