Data Driven Modeling and Model Predictive Control of Bioreactor for Production of Monoclonal Antibodies

被引:0
|
作者
Sarna, Samardeep [1 ]
Patel, Nikesh [1 ]
Mhaskar, Prashant [1 ]
Corbett, Brandon [1 ,2 ]
McCready, Chris [3 ]
机构
[1] McMaster Univ, Dept Chem Engn, Hamilton, ON L8S 4L8, Canada
[2] Sartorius Corp Res, Oakville, ON L6M 2V9, Canada
[3] Sartorius Corp Res, Oakville, ON L6M 2V9, Canada
来源
2022 AMERICAN CONTROL CONFERENCE, ACC | 2022年
关键词
NEURAL-NETWORKS; BATCH;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This manuscript focuses on data driven modeling and control of an industrial bioreactor used by Sartorius to grow cells to produce monoclonal antibodies, demonstrated using a high fidelity simulation test bed. The contribution of this paper is the development of a subspace model based model predictive controller (MPC) for the bioreactor with constraints in place to manage the delicate cell health and growth. Subspace identification is first utilized for developing a linear model, and utilized, along with a state observer, to formulate and implement the Model Predictive Controller. Three implementations are shown, the first which simply tracks a desired trajectory of the viable cell density while maximizing the total product, the second maximizing the total product, and finally a formulation to enable trajectory tracking of titer. In each case the MPC is able to successfully operate the bioreactor and show improvements compared to the existing proportional-integral controller. The success of the MPC implementation on the simulation test bed paves the way for implementation on the bioreactor, as well as the development much more ambitious MPC designs.
引用
收藏
页码:1347 / 1352
页数:6
相关论文
共 50 条
  • [31] Synthesis of model predictive control based on data-driven learning
    Zhou, Yuanqiang
    Li, Dewei
    Xi, Yugeng
    Gan, Zhongxue
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (08)
  • [32] Data-driven model predictive quality control of batch processes
    Aumi, Siam
    Corbett, Brandon
    Clarke-Pringle, Tracy
    Mhaskar, Prashant
    AICHE JOURNAL, 2013, 59 (08) : 2852 - 2861
  • [33] Data-driven model predictive control for precision irrigation management
    Bwambale, Erion
    Abagale, Felix K.
    Anornu, Geophrey K.
    SMART AGRICULTURAL TECHNOLOGY, 2023, 3
  • [34] A data-driven approach for model predictive control performance monitoring
    Zhang, Guang-Ming
    Li, Ning
    Li, Shao-Yuan
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45 (08): : 1113 - 1118
  • [35] Data-Driven Optimization Framework for Nonlinear Model Predictive Control
    Zhang, Shiliang
    Cao, Hui
    Zhang, Yanbin
    Jia, Lixin
    Ye, Zonglin
    Hei, Xiali
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [36] Robust Model Predictive Control with Data-Driven Koopman Operators
    Mamakoukas, Giorgos
    Di Cairano, Stefano
    Vinod, Abraham P.
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3885 - 3892
  • [37] Data-driven model predictive control for continuous pharmaceutical manufacturing
    Vega-Zambrano, Consuelo
    Diangelakis, Nikolaos A.
    Charitopoulos, Vassilis M.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2025, 672
  • [38] Data-Driven Model Predictive Control With Stability and Robustness Guarantees
    Berberich, Julian
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1702 - 1717
  • [39] Synthesis of model predictive control based on data-driven learning
    Yuanqiang Zhou
    Dewei Li
    Yugeng Xi
    Zhongxue Gan
    Science China Information Sciences, 2020, 63
  • [40] Data-driven Model Predictive Control with Matrix Forgetting Factor
    Calderon, Horacio M.
    Schulz, Erik
    Oehlschlaegel, Thimo
    Werner, Herbert
    IFAC PAPERSONLINE, 2023, 56 (02): : 10077 - 10082