Bifunctional Imidazole-Benzenesulfonic Acid Deep Eutectic Solvent for Fructose Dehydration to 5-Hydroxymethylfurfural

被引:16
|
作者
Ruan, Chencong [1 ]
Mo, Fan [1 ]
Qin, Hao [1 ]
Cheng, Hongye [1 ]
Chen, Lifang [1 ]
Qi, Zhiwen [1 ]
机构
[1] East China Univ Sci & Technol, Sch Chem Engn, State Key Lab Chem Engn, Max Planck Partner Grp, 130 Meilong Rd, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Fructose; 5-HMF; Dehydration; Deep eutectic solvent; COSMO-RS; IONIC LIQUIDS; CONVERSION; BIOMASS; GLUCOSE; CATALYST; CHLORIDE; HUMINS; WATER; NMR;
D O I
10.1007/s10562-020-03309-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Imidazole (Im) and benzenesulfonic acid (BSA) formed deep eutectic solvents (DESs) were used as acidic catalyst and solvent for the dehydration of fructose to 5-hydroxymethylfurfural (5-HMF). The DES formation involved an acid-base neutralization to produce equimolar salt from BSA and Im, and subsequent interaction between equimolar salt as hydrogen bond acceptor and excessive BSA as hydrogen bond donor. The BSA-rich DES [Im:1.5BSA] with a 1:1.5 molar ratio of Im:BSA and 10% dosage exhibited high catalytic activity for fructose dehydration with a 5-HMF yield of 90.1% at 100 degrees C after a very short reaction time (3 min). The bifunctionality of [Im:1.5BSA] for promoting reaction rates and catalytic activity of fructose dehydration has been identified by tuned acidity of DESs and hydrogen bond interaction among fructose, 5-HMF, and DESs demonstrated by conductor-like screening model for real solvents (COSMO-RS) theory. [GRAPHICS] .
引用
收藏
页码:445 / 453
页数:9
相关论文
共 50 条
  • [1] Bifunctional Imidazole-Benzenesulfonic Acid Deep Eutectic Solvent for Fructose Dehydration to 5-Hydroxymethylfurfural
    Chencong Ruan
    Fan Mo
    Hao Qin
    Hongye Cheng
    Lifang Chen
    Zhiwen Qi
    Catalysis Letters, 2021, 151 : 445 - 453
  • [2] Alcohol Effect and the Related Mechanism on Fructose Dehydration into 5-Hydroxymethylfurfural in the Deep Eutectic Solvent of [Emim]Cl/Alcohol
    Zhang, Jing
    Xiao, Yuyan
    Zhong, Yaohua
    Du, Na
    Huang, Xirong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (07): : 3995 - 4002
  • [3] Highly efficient dehydration of fructose to 5-hydroxymethylfurfural in a green deep eutectic solvents system
    Chengqian Wang
    Caiyi Zhao
    Long Zhang
    Reaction Kinetics, Mechanisms and Catalysis, 2023, 136 : 2893 - 2906
  • [4] Highly efficient dehydration of fructose to 5-hydroxymethylfurfural in a green deep eutectic solvents system
    Wang, Chengqian
    Zhao, Caiyi
    Zhang, Long
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2023, 136 (06) : 2893 - 2906
  • [5] Efficient continuous dehydration of fructose to 5-hydroxymethylfurfural in ternary solvent system
    Chen, Pengru
    Yamaguchi, Aritomo
    Hiyoshi, Norihito
    Mimura, Naoki
    FUEL, 2023, 334
  • [6] Sulfonic Derivatives as Recyclable Acid Catalysts in the Dehydration of Fructose to 5-Hydroxymethylfurfural in Biphasic Solvent Systems
    Chen, Gongzhe
    Sun, Qianhui
    Xu, Jia
    Zheng, Lufan
    Rong, Junfeng
    Zong, Baoning
    ACS OMEGA, 2021, 6 (10): : 6798 - 6809
  • [7] Synthesis of 5-Hydroxymethylfurfural via Dehydration of Fructose
    Huang Shiyong
    Wang Fuli
    Pan Lixia
    PROGRESS IN CHEMISTRY, 2009, 21 (7-8) : 1442 - 1449
  • [8] Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural
    Qi, Xinhua
    Watanabe, Masaru
    Aida, Taku M.
    Smith, Richard L., Jr.
    CATALYSIS COMMUNICATIONS, 2009, 10 (13) : 1771 - 1775
  • [9] Novel solid acid catalyst for the production of 5-hydroxymethylfurfural with fructose dehydration
    Liu, Sile
    Shang, Dongmei
    Wang, Hailong
    Wu, Jing
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2022, 33 (06) : 477 - 489
  • [10] On the character of acid catalysis in the reaction of fructose dehydration with the formation of 5-hydroxymethylfurfural
    Grin, S.A.
    Tsimbalaev, S.R.
    Gel'fand, S.Yu.
    Chemical Physics Reports, 1994, 13 (05):