RATIONALITY OF BLOCKS OF QUASI-SIMPLE FINITE GROUPS

被引:5
|
作者
Farrell, Niamh [1 ]
Kessar, Radha [2 ]
机构
[1] TU Kaiserslautern, Fachbereich Math, Postfach 3049, D-67653 Kaiserslautern, Germany
[2] City Univ London, Dept Math, Northampton Sq, London EC1V 0HB, England
来源
REPRESENTATION THEORY | 2019年 / 23卷
基金
美国国家科学基金会;
关键词
REDUCTIVE GROUPS;
D O I
10.1090/ert/530
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let l be a prime number. We show that the Morita Frobenius number of an l-block of a quasi-simple finite group is at most 4 and that the strong Frobenius number is at most 4 vertical bar D vertical bar(2!), where D denotes a defect group of the block. We deduce that a basic algebra of any block of the group algebra of a quasi-simple finite group over an algebraically closed field of characteristic l is defined over a field with l(a) elements for some a <= 4. We derive consequences for Donovan's conjecture. In particular, we show that Donovan's conjecture holds for l-blocks of special linear groups.
引用
下载
收藏
页码:325 / 349
页数:25
相关论文
共 50 条