A high-dimensional bias-corrected AIC for selecting response variables in multivariate calibration

被引:2
|
作者
Oda, Ryoya [1 ]
Mima, Yoshie [1 ,2 ]
Yanagihara, Hirokazu [1 ]
Fujikoshi, Yasunori [1 ]
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan
[2] Inst Educ Fdn Fukuyama Akenohoshi, 3-4-1 Nishifukatsucho, Fukuyama, Hiroshima 7218545, Japan
基金
日本学术振兴会;
关键词
AIC; high-dimensional criterion; bias correction; multivariate calibration; MODEL SELECTION; REGRESSION; WISHART;
D O I
10.1080/03610926.2019.1705978
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a multivariate linear regression with a p-dimensional response vector y and a q-dimensional explanatory vector x, we consider a multivariate calibration problem requiring the estimation of an unknown explanatory vector corresponding to a response vector based on and n-samples of x and y. We propose a high-dimensional bias-corrected Akaike's information criterion () for selecting response variables. To correct the bias between a risk function and its estimator, we use a hybrid-high-dimensional asymptotic framework such that n tends to but p/n does not exceed 1. Through numerical experiments, we verify that the performs better than a formal AIC.
引用
下载
收藏
页码:3453 / 3476
页数:24
相关论文
共 50 条
  • [21] Multivariate Drought Monitoring, Propagation, and Projection Using Bias-Corrected General Circulation Models
    Adeyeri, Oluwafemi E.
    Zhou, Wen
    Laux, Patrick
    Ndehedehe, Christopher E.
    Wang, Xuan
    Usman, Muhammad
    Akinsanola, Akintomide A.
    EARTHS FUTURE, 2023, 11 (04)
  • [22] Projecting aridity from statistically downscaled and bias-corrected variables for the Gediz Basin, Turkey
    Kirdemir, Umut
    Okkan, Umut
    Fistikoglu, Okan
    JOURNAL OF WATER AND CLIMATE CHANGE, 2022, 13 (08) : 3061 - 3082
  • [23] Consistency of high-dimensional AIC-type and Cp-type criteria in multivariate linear regression
    Fujikoshi, Yasunori
    Sakurai, Tetsuro
    Yanagihara, Hirokazu
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 123 : 184 - 200
  • [24] Multivariate linear regression of high-dimensional fMRI data with multiple target variables
    Valente, Giancarlo
    Castellanos, Agustin Lage
    Vanacore, Gianluca
    Formisano, Elia
    HUMAN BRAIN MAPPING, 2014, 35 (05) : 2163 - 2177
  • [25] Bias-corrected high-resolution temperature and precipitation projections for Canada
    Hebatallah M. Abdelmoaty
    Chandra Rupa Rajulapati
    Sofia D. Nerantzaki
    Simon Michael Papalexiou
    Scientific Data, 12 (1)
  • [26] Jackknife bias correction of the AIC for selecting variables in canonical correlation analysis under model misspecification
    Hashiyama, Yusuke
    Yanagihara, Hirokazu
    Fujikoshi, Yasunori
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 455 : 82 - 106
  • [27] High-dimensional multivariate probit analysis
    Bock, RD
    Gibbons, RD
    BIOMETRICS, 1996, 52 (04) : 1183 - 1194
  • [28] Constructing High-Resolution, Bias-Corrected Climate Products: A Comparison of Methods
    Holthuijzen, Maike F.
    Beckage, Brian
    Clemins, Patrick J.
    Higdon, Dave
    Winter, Jonathan M.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2021, 60 (04) : 455 - 475
  • [29] Calibration of building energy computer models via bias-corrected iteratively reweighted least squares method
    Jeong, Cheoljoon
    Byon, Eunshin
    APPLIED ENERGY, 2024, 360
  • [30] Prediction of near-surface variables at independent locations from a bias-corrected ensemble forecasting system
    Yussouf, Nusrat
    Stensrud, David J.
    MONTHLY WEATHER REVIEW, 2006, 134 (11) : 3415 - 3424