QUANTUM ERROR CORRECTION AND FAULT-TOLERANT QUANTUM COMPUTING

被引:0
|
作者
Gaitan, Frank [1 ,2 ,3 ]
Li, Ran [2 ,3 ,4 ]
机构
[1] Southern Illinois Univ, Dept Phys, Carbondale, IL 62901 USA
[2] RIKEN, Adv Sci Inst, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan
[3] Japan Sci & Technol Agcy, JST, CREST, Kawaguchi, Saitama 3320012, Japan
[4] Kent State Univ, Dept Phys, North Canton, OH 44720 USA
关键词
Quantum Error Correction; Fault-Tolerant Quantum Computing; Accuracy Threshold Theorem; High-Fidelity Universal Quantum Gates; COMPUTATION; CODES; INTERFERENCE;
D O I
10.1142/9789814295840_0002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We review the theories of quantum error correction, and of fault-tolerant quantum computing, and show how these powerful tools are combined to prove the accuracy threshold theorem for a particular error model. One of the theorem's assumptions is the availability of a universal set of unencoded quantum gates whose error probabilities P-e fall below a value known as the accuracy threshold P-a. For many, P-a similar to 10(-4) has become a rough estimate for the threshold so that quantum gates are anticipated to be approaching the accuracies needed for fault-tolerant quantum computing when P-e < 10(-4). We show how controllable quantum interference effects that arise during a type of non-adiabatic rapid passage can be used to produce a universal set of quantum gates whose error probabilities satisfy P-e < 10(-4). We close with a discussion of the current challenges facing an experimental implementation of this approach to reliable universal quantum computation.
引用
下载
收藏
页码:53 / +
页数:3
相关论文
共 50 条
  • [31] Fault-Tolerant Quantum Error Correction for non-Abelian Anyons
    Dauphinais, Guillaume
    Poulin, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 355 (02) : 519 - 560
  • [32] Toward Early Fault-tolerant Quantum Computing
    Tokunaga Y.
    NTT Technical Review, 2023, 21 (11): : 43 - 48
  • [33] A control microarchitecture for fault-tolerant quantum computing
    Fu, X.
    Lao, L.
    Bertels, K.
    Almudever, C. G.
    MICROPROCESSORS AND MICROSYSTEMS, 2019, 70 : 21 - 30
  • [34] More Efficient Fault-Tolerant Quantum Computing
    Monroe, Don
    COMMUNICATIONS OF THE ACM, 2024, 67 (05) : 26 - 28
  • [35] Fault-tolerant quantum computing in the Pauli or Clifford frame with slow error diagnostics
    Chamberland, Christopher
    Iyer, Pavithran
    Poulin, David
    QUANTUM, 2018, 2
  • [36] Fault-tolerant measurement-free quantum error correction with multiqubit gates
    Perlin, Michael A.
    Premakumar, Vickram N.
    Wang, Jiakai
    Saffman, Mark
    Joynt, Robert
    PHYSICAL REVIEW A, 2023, 108 (06)
  • [37] Universal Fault-Tolerant Quantum Computation with Only Transversal Gates and Error Correction
    Paetznick, Adam
    Reichardt, Ben W.
    PHYSICAL REVIEW LETTERS, 2013, 111 (09)
  • [38] Quantum Error Mitigation as a Universal Error Reduction Technique: Applications from the NISQ to the Fault-Tolerant Quantum Computing Eras
    Suzuki, Yasunari
    Endo, Suguru
    Fujii, Keisuke
    Tokunaga, Yuuki
    PRX QUANTUM, 2022, 3 (01):
  • [39] Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit
    Alicki, Robert
    Lidar, Daniel A.
    Zanardi, Paolo
    PHYSICAL REVIEW A, 2006, 73 (05):
  • [40] Towards fault-tolerant quantum computing with trapped ions
    Benhelm, Jan
    Kirchmair, Gerhard
    Roos, Christian F.
    Blatt, Rainer
    NATURE PHYSICS, 2008, 4 (06) : 463 - 466