Prediction of equilibrium water dew point of natural gas in TEG dehydration systems using Bayesian Feedforward Artificial Neural Network (FANN)

被引:8
|
作者
Ahmad, Z. [1 ]
Bahadori, Alireza [2 ]
Zhang, Jie [3 ]
机构
[1] Univ Sains Malaysia, Sch Chem Engn, Engn Campus, Nibong Tebal 14300, Penang, Malaysia
[2] Southern Cross Univ, Sch Environm Sci & Engn, Lismore, NSW, Australia
[3] Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne, Tyne & Wear, England
关键词
Artificial intelligent; equilibrium water dew point; feedforward artificial neural network; process modeling; TEG dehydration process; OPTIMIZATION;
D O I
10.1080/10916466.2018.1496108
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The aim of this paper is to predict the equilibrium water dew point of natural gas in TEG dehydration process using feedforward artificial neural network (FANN). The ANN model shows a good result as the coefficient of determination of 0.9989 and 0.9976 was obtained for training and testing data respectively with relatively small value of mean square errors of 0.0203 and 0.0221. 0.5% of average absolute deviation percentage was observed which is comparable with the literatures. It clearly shows that FANN gives a good prediction on water dew point of natural gas in TEG dehydration process.
引用
收藏
页码:1620 / 1626
页数:7
相关论文
共 50 条
  • [1] A computational intelligence scheme for prediction equilibrium water dew point of natural gas in TEG dehydration systems
    Ahmadi, Mohammad Ali
    Soleimani, Reza
    Bahadori, Alireza
    [J]. FUEL, 2014, 137 : 145 - 154
  • [2] Rapid estimation of equilibrium water dew point of natural gas in TEG dehydration systems
    Bahadori, Alireza
    Vuthaluru, Hari B.
    [J]. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2009, 1 (03) : 68 - 71
  • [3] Prediction of absorption and stripping factors in natural gas processing industries using feedforward artificial neural network
    Ahmad, Zainal
    Zhang, Jie
    Kashiwao, Tomoaki
    Bahadori, Alireza
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (02) : 105 - 113
  • [4] Parameter screening and optimized gaussian process for water dew point prediction of natural gas dehydration unit
    Ren, Hongji
    Yin, Aijun
    Dai, Zongxian
    Liu, Xiaochun
    Tan, Zhibin
    Zhang, Bo
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 170 : 259 - 266
  • [5] Estimation of triethylene glycol (TEG) purity in natural gas dehydration units using fuzzy neural network
    Ghiasi, Mohammad M.
    Bahadori, Alireza
    Zendehboudi, Sohrab
    [J]. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2014, 17 : 26 - 32
  • [6] Sensitivity analysis and faults diagnosis using artificial neural networks in natural gas TEG-dehydration plants
    Darwish, Naif A.
    Hilal, Nidal
    [J]. CHEMICAL ENGINEERING JOURNAL, 2008, 137 (02) : 189 - 197
  • [7] Artificial neural network modelling of natural gas dehydration process
    Brandon Z. H. Goh
    Rafil Elyas
    Anuar Hamid
    Dominic C. Y. Foo
    [J]. Discover Chemical Engineering, 4 (1):
  • [8] Controlling hydrocarbon dew point and water dew point of natural gas using Aspen HYSYS
    El Maghraby M.A.
    El Moniem N.A.
    Abdelghany A.
    [J]. Journal of Engineering and Applied Science, 2022, 69 (1):
  • [9] Compressive Strength Prediction of Concrete Recycled Aggregates made from Ceramic Tiles using Feedforward Artificial Neural Network (FANN)
    Kin, Chan Chee
    Don, Mashitah Mat
    Ahmad, Z.
    [J]. 11TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, PTS A AND B, 2012, 31 : 320 - 324
  • [10] Neural computing approach for estimation of natural gas dew point temperature in glycol dehydration plant
    Ghanbari, Alireza
    Kardani, Mohammad Navid
    Moazami Goodarzi, Ali
    Janghorban Lariche, Milad
    Baghban, Alireza
    [J]. INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2020, 41 (07) : 775 - 782