Parameter screening and optimized gaussian process for water dew point prediction of natural gas dehydration unit

被引:4
|
作者
Ren, Hongji [1 ,2 ]
Yin, Aijun [3 ]
Dai, Zongxian [4 ]
Liu, Xiaochun [1 ]
Tan, Zhibin [3 ]
Zhang, Bo [5 ]
机构
[1] Chongqing Coll Elect Engn, Intelligent Mfg & Automobile Sch, Chongqing 401331, Peoples R China
[2] Fujian Polytech Normal Univ, Fujian Prov Univ, Key Lab Nondestruct Testing, Fuzhou 350300, Fujian, Peoples R China
[3] Chongqing Univ, State Key Lab Mech Transmiss, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China
[4] Chongqing Acad Metrol & Qual Inspect, Chongqing 401123, Peoples R China
[5] PetroChina Southwest Oil & Gas Field Co, Chongqing Gas Field, Chongqing 400021, Peoples R China
基金
中国国家自然科学基金;
关键词
Petrochemical equipment; Process parameters; Online prediction; Dehydration unit; Natural gas water dew point; FEATURE-SELECTION;
D O I
10.1016/j.psep.2022.12.019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Petrochemical equipment is characterized by continuity, large scale, complexity of processes, and critical operation conditions. Based on auto-collected monitoring parameters, online prediction of critical process parameters can be used to maintain high reliability of petrochemical equipment, which is generally unpractical due to interference parameters and the difficulty in establishing prediction models. In this paper, a process parameter online prediction method for petrochemical equipment is proposed. Firstly, sensitive parameters are selected applying gradient boosting decision tree (GBDT). Then optimized Gaussian process (GP) is utilized to develop a mapping model in order to inference process parameter from auto-collected parameters. Natural gas water dew point online prediction method for triethylene glycol (TEG) dehydration unit is investigated. The effectiveness of the proposed method is verified on production data of a natural gas dehydration station. The method proposed provides a promising solution for process parameter prediction for petrochemical processes as well as other similar scenarios.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 25 条
  • [1] A computational intelligence scheme for prediction equilibrium water dew point of natural gas in TEG dehydration systems
    Ahmadi, Mohammad Ali
    Soleimani, Reza
    Bahadori, Alireza
    FUEL, 2014, 137 : 145 - 154
  • [2] Rapid estimation of equilibrium water dew point of natural gas in TEG dehydration systems
    Bahadori, Alireza
    Vuthaluru, Hari B.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2009, 1 (03) : 68 - 71
  • [3] A novel absorption process for small-scale natural gas dew point control and dehydration
    Diaz Rincon, Marcelo
    Jimenez-Junca, Carlos
    Roa Duarte, Carlos
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 29 : 264 - 274
  • [4] Prediction of equilibrium water dew point of natural gas in TEG dehydration systems using Bayesian Feedforward Artificial Neural Network (FANN)
    Ahmad, Z.
    Bahadori, Alireza
    Zhang, Jie
    PETROLEUM SCIENCE AND TECHNOLOGY, 2018, 36 (20) : 1620 - 1626
  • [5] Controlling hydrocarbon dew point and water dew point of natural gas using Aspen HYSYS
    El Maghraby M.A.
    El Moniem N.A.
    Abdelghany A.
    Journal of Engineering and Applied Science, 2022, 69 (1):
  • [6] Measurement and prediction of dew point curves of natural gas mixtures
    Louli, Vasiliki
    Pappa, Georgia
    Boukouvalas, Christos
    Skouras, Stathis
    Solbraa, Even
    Christensen, Kjersti O.
    Voutsas, Epaminondas
    FLUID PHASE EQUILIBRIA, 2012, 334 : 1 - 9
  • [7] Neural computing approach for estimation of natural gas dew point temperature in glycol dehydration plant
    Ghanbari, Alireza
    Kardani, Mohammad Navid
    Moazami Goodarzi, Ali
    Janghorban Lariche, Milad
    Baghban, Alireza
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2020, 41 (07) : 775 - 782
  • [8] Technical key to the determination of dew point of natural gas water by capacitive method
    Mu C.
    Suo Y.
    Zhao Y.
    Tan W.
    Li D.
    Wang H.
    Yu W.
    Wang H.
    He B.
    Natural Gas Industry, 2022, 42 : 166 - 170
  • [9] Recovery enhancement of liquid hydrocarbons in dew point control unit of natural gas processing plant
    Jalali, Ali
    Lotfi, Marzieh
    Zilabi, Sara
    Mohammadi, Amir H.
    SEPARATION SCIENCE AND TECHNOLOGY, 2020, 55 (07) : 1407 - 1414
  • [10] Sensitivity analysis and process optimization of a natural gas dehydration unit using triethylene glycol
    Petropoulou, Eirini G.
    Carollo, Cristina
    Pappa, Georgia D.
    Caputo, Giuseppe
    Voutsas, Epaminondas C.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2019, 71