DIMENSION REDUCTION FOR LINEAR SEPARATION WITH CURVILINEAR DISTANCES

被引:0
|
作者
Winkley, Jonathan [1 ]
Jiang, Ping [1 ]
Hossain, Alamgir [1 ]
机构
[1] Univ Bradford, Sch Comp Informat & Media, Bradford BD7 1DP, W Yorkshire, England
关键词
Dimension Reduction; Curvilinear Distances; Clustering; Classification; Linear Separation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Any high dimensional data in its original raw form may contain obviously classifiable clusters which are difficult to identify given the high-dimension representation. In reducing the dimensions it may be possible to perform a simple classification technique to extract this cluster information whilst retaining the overall topology of the data set. The supervised method presented here takes a high dimension data set consisting of multiple clusters and employs curvilinear distance as a relation between points, projecting in a lower dimension according to this relationship. This representation allows for linear separation of the non-separable high dimensional cluster data and the classification to a cluster of any successive unseen data point extracted from the same higher dimension.
引用
收藏
页码:515 / 522
页数:8
相关论文
共 50 条
  • [41] Criteria and dimension reduction of linear multiple criteria optimization problems
    Nguyen V. Thoai
    [J]. Journal of Global Optimization, 2012, 52 : 499 - 508
  • [42] Induced Dimension Reduction method for solving linear matrix equations
    Astudillo, Reinaldo
    van Gijzen, Martin B.
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 222 - 232
  • [43] Multiclass linear dimension reduction by weighted pairwise Fisher criteria
    Loog, M
    Duin, RPW
    Haeb-Umbach, R
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (07) : 762 - 766
  • [44] Sparse quadratic classification rules via linear dimension reduction
    Gaynanova, Irina
    Wang, Tianying
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 169 : 278 - 299
  • [45] Damping Optimization for Linear Vibrating Systems Using Dimension Reduction
    Benner, Peter
    Tomljanovic, Zoran
    Truhar, Ninoslav
    [J]. VIBRATION PROBLEMS ICOVP 2011, 2011, 139 : 297 - 305
  • [46] Linear regression classification steered discriminative projection for dimension reduction
    Liu, Zhonghua
    Liu, Gang
    Zhang, Lin
    Pu, Jiexin
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (17-18) : 11993 - 12005
  • [47] Linear dimension reduction in classification: adaptive procedure for optimum results
    Karsten Luebke
    Claus Weihs
    [J]. Advances in Data Analysis and Classification, 2011, 5
  • [48] Linear dimension reduction in classification: adaptive procedure for optimum results
    Luebke, Karsten
    Weihs, Claus
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2011, 5 (03) : 201 - 213
  • [49] MULTICLASS LINEAR DIMENSION REDUCTION VIA A GENERALIZED CHERNOFF BOUND
    Thangavelu, Madan
    Raich, Raviv
    [J]. 2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 350 - 355
  • [50] Progression in ALS is not linear but is curvilinear
    Gordon, Paul H.
    Cheng, Bin
    Salachas, Francois
    Pradat, Pierre-Francois
    Bruneteau, Gaelle
    Corcia, Philippe
    Lacomblez, Lucette
    Meininger, Vincent
    [J]. JOURNAL OF NEUROLOGY, 2010, 257 (10) : 1713 - 1717