Tight bound of random interval packing

被引:2
|
作者
Rhee, WT [1 ]
机构
[1] Ohio State Univ, Dept Management Sci, Columbus, OH 43210 USA
关键词
interval packing; wasted space; uniform distribution;
D O I
10.1017/S0021900200016685
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider n random intervals I-1, . . . , I-N chosen by selecting endpoints independently from the uniform distribution. A packing of I-1, . . . , I-N is a disjoint sub-collection of these intervals: its wasted space is the measure of the set of points not covered by the packing. We investigate the random variable W-N equal to the smallest wasted space among all packings. Coffman, Poonen and Winkler proved that EWN is of order (log N)(2)/N. We provide a sharp estimate of log P(W-N greater than or equal to t(log N)(2)/N) and log P (W-N less than or equal to t(log N)(2)/N) for all values of t.
引用
收藏
页码:990 / 997
页数:8
相关论文
共 50 条
  • [41] Generalized Sphere Packing Bound
    Fazeli, Arman
    Vardy, Alexander
    Yaakobi, Eitan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (05) : 2313 - 2334
  • [42] A tight bound for the joint covariance of two random vectors with unknown but constrained cross-correlation
    Hanebeck, UD
    Briechle, K
    Horn, J
    MFI2001: INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS, 2001, : 85 - 90
  • [43] Random Tight Frames
    M. Ehler
    Journal of Fourier Analysis and Applications, 2012, 18 : 1 - 20
  • [44] Random Tight Frames
    Ehler, M.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (01) : 1 - 20
  • [45] An Upper Bound Estimation About the Sample Average of Interval-Valued Random Sets
    Wang, Xia
    Guan, Li
    SOFT METHODS FOR DATA SCIENCE, 2017, 456 : 519 - 524
  • [46] A tight bound on negativity of superpositions
    K.-H. Ma
    C. S. Yu
    H. S. Song
    The European Physical Journal D, 2010, 59 : 317 - 320
  • [47] A TIGHT SPACE BOUND FOR CONSENSUS
    Zhu, Leqi
    SIAM JOURNAL ON COMPUTING, 2021, 50 (03)
  • [48] Erratum to: Tight bound for matching
    Yijie Han
    Journal of Combinatorial Optimization, 2013, 26 (2) : 412 - 414
  • [49] A Tight Bound for Congestion of an Embedding
    Manuel, Paul
    Rajasingh, Indra
    Rajan, R. Sundara
    Parthiban, N.
    Rajalaxmi, T. M.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS (CALDAM 2015), 2015, 8959 : 229 - 237
  • [50] A Tight Space Bound for Consensus
    Zhu, Leqi
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 345 - 350