The existence and uniqueness of solution for linear system of mixed Volterra-Fredholm integral equations in Banach space

被引:6
|
作者
Hasan, Pakhshan M. [1 ]
Abdulla, Nejmaddin A. [1 ]
Soleymani, Fazlollah [2 ]
Akgul, Ali [3 ]
机构
[1] Salahaddin Univ Erbil, Coll Educ, Dept Math, Erbil, Kurdistan Regio, Iraq
[2] IASBS, Dept Math, Zanjan 4513766731, Iran
[3] Siirt Univ, Art & Sci Fac, Dept Math, Siirt, Turkey
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 01期
关键词
fixed point method; contraction mapping; Banach fixed-point (FP) theorem; mixed Volterra-Fredholm integral equation; FIXED-POINT METHOD; COLLOCATION METHOD;
D O I
10.3934/math.2020014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a linear system of mixed Volterra-Fredholm integral equations is considered. The problem of existence and uniqueness of its solution is investigated and proved in a complete metric space by using the Banach fixed-point theorem. Also, an iterative method of fixed point type is used to approximate the solution of the system. The algorithm is applied on several examples. To show the accuracy of the results and the efficiency of the method, the approximate solutions are compared with the exact solutions.
引用
收藏
页码:226 / 235
页数:10
相关论文
共 50 条
  • [31] ON A GENERAL MIXED VOLTERRA-FREDHOLM INTEGRAL EQUATION
    Pachpatte, B. G.
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (01): : 17 - 24
  • [32] Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations
    Yazdani, S.
    Hadizadeh, M.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (02): : 305 - 322
  • [33] Least squares approximation method for the solution of Volterra-Fredholm integral equations
    Wang, Qisheng
    Wang, Keyan
    Chen, Shaojun
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 : 141 - 147
  • [34] Improved Block-Pulse Functions for Numerical Solution of Mixed Volterra-Fredholm Integral Equations
    He, Ji-Huan
    Taha, Mahmoud H.
    Ramadan, Mohamed A.
    Moatimid, Galal M.
    [J]. AXIOMS, 2021, 10 (03)
  • [35] ON MIXED NONLINEAR INTEGRAL EQUATIONS OF VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT
    Bacotiu, Claudia
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2009, 54 (01): : 29 - 41
  • [36] Numerical solution of nonlinear mixed Volterra-Fredholm integral equations in complex plane via PQWs
    Beiglo, H.
    Gachpazan, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 369
  • [37] NUMERICAL SOLUTION FOR STOCHASTIC VOLTERRA-FREDHOLM INTEGRAL EQUATIONS WITH DELAY ARGUMENTS
    Yao, Kutorzi edwin
    Zhang, Yuxue
    Shi, Yufeng
    [J]. ACTA POLYTECHNICA, 2024, 64 (02) : 128 - 141
  • [38] On the Multiwavelets Galerkin Solution of the Volterra-Fredholm Integral Equations by an Efficient Algorithm
    Jebreen, H. Bin
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020
  • [39] An Algorithm for the Solution of Nonlinear Volterra-Fredholm Integral Equations with a Singular Kernel
    Abusalim, Sahar M.
    Abdou, Mohamed A.
    Nasr, Mohamed E.
    Abdel-Aty, Mohamed A.
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [40] Numerical solution of Volterra-Fredholm integral equations based on ε-SVR method
    Xu, Haitao
    Fan, Liya
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 298 : 201 - 210