The existence and uniqueness of solution for linear system of mixed Volterra-Fredholm integral equations in Banach space

被引:6
|
作者
Hasan, Pakhshan M. [1 ]
Abdulla, Nejmaddin A. [1 ]
Soleymani, Fazlollah [2 ]
Akgul, Ali [3 ]
机构
[1] Salahaddin Univ Erbil, Coll Educ, Dept Math, Erbil, Kurdistan Regio, Iraq
[2] IASBS, Dept Math, Zanjan 4513766731, Iran
[3] Siirt Univ, Art & Sci Fac, Dept Math, Siirt, Turkey
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 01期
关键词
fixed point method; contraction mapping; Banach fixed-point (FP) theorem; mixed Volterra-Fredholm integral equation; FIXED-POINT METHOD; COLLOCATION METHOD;
D O I
10.3934/math.2020014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a linear system of mixed Volterra-Fredholm integral equations is considered. The problem of existence and uniqueness of its solution is investigated and proved in a complete metric space by using the Banach fixed-point theorem. Also, an iterative method of fixed point type is used to approximate the solution of the system. The algorithm is applied on several examples. To show the accuracy of the results and the efficiency of the method, the approximate solutions are compared with the exact solutions.
引用
收藏
页码:226 / 235
页数:10
相关论文
共 50 条
  • [1] On the existence and uniqueness of solutions of fuzzy Volterra-Fredholm integral equations
    Park, JY
    Jeong, JU
    [J]. FUZZY SETS AND SYSTEMS, 2000, 115 (03) : 425 - 431
  • [2] EXISTENCE OF SOLUTIONS FOR MIXED VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
    Aghajani, Asadollah
    Jalilian, Yaghoub
    Sadarangani, Kishin
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [3] Solution of system of the mixed Volterra-Fredholm integral equations by an analytical method
    Ghasemi, M.
    Fardi, M.
    Ghaziani, R. Khoshsiar
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2013, 58 (7-8) : 1522 - 1530
  • [4] Existence and Uniqueness of the Solution for Volterra-Fredholm Integro-Differential Equations
    Hamoud, Ahmed A.
    Ghadle, Kirtiwant P.
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2018, 11 (06): : 692 - 701
  • [5] Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations using Taylor Expansion Method
    Didgar, Mohsen
    Vahidi, Alireza
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (02): : 31 - 50
  • [6] A meshless approximate solution of mixed Volterra-Fredholm integral equations
    Dastjerdi, H. Laeli
    Ghaini, F. M. Maalek
    Hadizadeh, M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (03) : 527 - 538
  • [7] An approximate solution for a mixed linear Volterra-Fredholm integral equation
    Chen, Zhong
    Jiang, Wei
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (08) : 1131 - 1134
  • [8] On Existence and Uniqueness of Solutions of a Nonlinear Volterra-Fredholm Integral Equation
    Moradi, S.
    Anjedani, M. Mohammadi
    Analoei, E.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2015, 6 (01): : 62 - 68
  • [9] Existence and Uniqueness of Solution for Two-Dimensional Fuzzy Volterra-Fredholm Integral Equation
    Vu, Ho
    Dong, Le Si
    [J]. THAI JOURNAL OF MATHEMATICS, 2021, 19 (04): : 1355 - 1365
  • [10] ON MIXED VOLTERRA-FREDHOLM TYPE INTEGRAL-EQUATIONS
    PACHPATTE, BG
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1986, 17 (04): : 488 - 496