Variability Study of Toggle Spin Torques Magnetic Random Access Memory

被引:2
|
作者
Yu, Zhitai [1 ,2 ,3 ]
Wang, Yijiao [1 ,2 ,4 ]
Zhang, Zeqing [5 ]
Zhi, Jianglong [1 ,2 ,3 ]
Wang, Zhaohao [1 ,2 ,4 ]
Nie, Tianxiao [1 ,2 ,4 ]
Zhao, Weisheng [1 ,2 ,4 ]
机构
[1] Beihang Univ, Sch Integrated Circuit Sci & Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, MIIT Key Lab Spintron, Beijing 100191, Peoples R China
[3] Beihang Univ, Hefei Innovat Res Inst, Hefei 230013, Peoples R China
[4] Beihang Univ, Fert Beijing Res Inst, Beijing 100191, Peoples R China
[5] Beihang Univ, Sch Gen Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Spin-orbit torque (SOT); spin transfer torque (STT); toggle spin torques (TSTs); variation; write error rate (WER); ORBIT TORQUE; MRAM; FAILURE; IMPACT; CACHE;
D O I
10.1109/TMAG.2021.3076010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the process node further scaling down, the bit cell of magnetic random access memory (MRAM) device suffers from severe failure and reliability problems due to its process variation. In this article, we explored the variability of a promising toggle spin torques MRAM (TST-MRAM) in detail, which achieves ultrafast switching speed and high endurance and is expected to be applied as upper-level caches. Our research is conducted with a 14 nm FinFET design kit, the basic performance of TST-MRAM and different pulse conditions are explored, and then the variation effect of device parameters is discussed and compared in detail as well as the write error rate (WER) under different voltages. The results demonstrate that the variation of access transistors dominates the variability, where the transistor in the spin-orbit torque (SOT) branch has a greater negative impact than the transistor in the spin transfer torque (STT) branch. To further reduce WER, a better structure with diodes of bit cell is proposed.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Magnetic random access memory devices
    Vasil'eva, NP
    Kasatkin, SI
    [J]. AUTOMATION AND REMOTE CONTROL, 2003, 64 (09) : 1369 - 1385
  • [32] Magnetic Random Access Memory Devices
    N. P. Vasil'eva
    S. I. Kasatkin
    [J]. Automation and Remote Control, 2003, 64 : 1369 - 1385
  • [33] Spin tunneling random access memory (STram)
    Wang, ZG
    Nakamura, Y
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (05) : 4022 - 4024
  • [34] Toggle magneto resistance random access memory based on magneto statically coupled bilayers
    Wang, SY
    Fujiwara, H
    Sun, M
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 295 (03) : 246 - 250
  • [35] Orthogonal shape/intrinsic anisotropy toggle-mode magnetoresistance random access memory
    Wang, SY
    Fujiwara, H
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 98 (02)
  • [36] Spin-transfer magnetic random access memory devices with an orthogonal polarizing layer
    Liu, Huanlong
    [J]. MODERN PHYSICS LETTERS B, 2014, 28 (12):
  • [37] PAC Code Construction for Spin-Torque Transfer Magnetic Random Access Memory
    Dai, Bin
    Mei, Zhen
    Cai, Kui
    Kong, Lingjun
    Zhong, Xingwei
    [J]. 2023 IEEE INTERNATIONAL MAGNETIC CONFERENCE, INTERMAG, 2023,
  • [38] Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM)
    Apalkov, Dmytro
    Khvalkovskiy, Alexey
    Watts, Steven
    Nikitin, Vladimir
    Tang, Xueti
    Lottis, Daniel
    Moon, Kiseok
    Luo, Xiao
    Chen, Eugene
    Ong, Adrian
    Driskill-Smith, Alexander
    Krounbi, Mohamad
    [J]. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2013, 9 (02)
  • [39] Radiation hardening design for spin-orbit torque magnetic random access memory
    Wang, Bi
    Wang, Zhaohao
    Cao, Kaihua
    Zhang, Youguang
    Zhao, Yuanfu
    Zhao, Weisheng
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [40] Magnetic nanostructures and materials in magnetic random access memory
    Dai, JB
    Tang, JK
    Hsu, ST
    Pan, W
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2002, 2 (3-4) : 281 - 291