Localization for Yang-Mills theory on the fuzzy sphere

被引:13
|
作者
Steinacker, Harold [1 ]
Szabo, Richard J. [2 ,3 ]
机构
[1] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
D O I
10.1007/s00220-007-0386-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new model for Yang-Mills theory on the fuzzy sphere in which the configuration space of gauge fields is given by a coadjoint orbit. In the classical limit it reduces to ordinary Yang-Mills theory on the sphere. We find all classical solutions of the gauge theory and use nonabelian localization techniques to write the partition function entirely as a sum over local contributions from critical points of the action, which are evaluated explicitly. The partition function of ordinary Yang-Mills theory on the sphere is recovered in the classical limit as a sum over instantons. We also apply abelian localization techniques and the geometry of symmetric spaces to derive an explicit combinatorial expression for the partition function, and compare the two approaches. These extend the standard techniques for solving gauge theory on the sphere to the fuzzy case in a rigorous framework.
引用
收藏
页码:193 / 252
页数:60
相关论文
共 50 条
  • [21] Yang-Mills as a Liouville theory
    Stieberger, Stephan
    Taylor, Tomasz R.
    Zhu, Bin
    [J]. PHYSICS LETTERS B, 2023, 846
  • [22] Carrollian Yang-Mills theory
    Islam, Minhajul
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, (05):
  • [23] Emergent Yang-Mills theory
    Koch, Robert de Mello
    Huang, Jia-Hui
    Kim, Minkyoo
    Van Zyl, Hendrik J. R.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (10)
  • [24] A BRST gauge-fixing procedure for Yang-Mills theory on sphere
    Banerjee, R
    Deguchi, S
    [J]. PHYSICS LETTERS B, 2006, 632 (04) : 579 - 585
  • [25] Classical Yang-Mills theory
    Boozer, A. D.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2011, 79 (09) : 925 - 931
  • [26] Yang-Mills theory in λ gauges
    Maas, Axel
    Mendes, Tereza
    Olejnik, Stefan
    [J]. PHYSICAL REVIEW D, 2011, 84 (11):
  • [27] GRAVITY AND YANG-MILLS THEORY
    Ananth, Sudarshan
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (14): : 2379 - 2384
  • [28] Carrollian Yang-Mills theory
    Minhajul Islam
    [J]. Journal of High Energy Physics, 2023 (5)
  • [29] Quantization of Yang-Mills theory
    Muslih, SI
    El-Zalan, HA
    El-Sabaa, F
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (10) : 2495 - 2502
  • [30] YANG-MILLS THEORY AND UNIFORMIZATION
    SIMPSON, CT
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1987, 14 (04) : 371 - 377