Localization for Yang-Mills theory on the fuzzy sphere

被引:13
|
作者
Steinacker, Harold [1 ]
Szabo, Richard J. [2 ,3 ]
机构
[1] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
D O I
10.1007/s00220-007-0386-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new model for Yang-Mills theory on the fuzzy sphere in which the configuration space of gauge fields is given by a coadjoint orbit. In the classical limit it reduces to ordinary Yang-Mills theory on the sphere. We find all classical solutions of the gauge theory and use nonabelian localization techniques to write the partition function entirely as a sum over local contributions from critical points of the action, which are evaluated explicitly. The partition function of ordinary Yang-Mills theory on the sphere is recovered in the classical limit as a sum over instantons. We also apply abelian localization techniques and the geometry of symmetric spaces to derive an explicit combinatorial expression for the partition function, and compare the two approaches. These extend the standard techniques for solving gauge theory on the sphere to the fuzzy case in a rigorous framework.
引用
收藏
页码:193 / 252
页数:60
相关论文
共 50 条
  • [1] Localization for Yang-Mills Theory on the Fuzzy Sphere
    Harold Steinacker
    Richard J. Szabo
    [J]. Communications in Mathematical Physics, 2008, 278 : 193 - 252
  • [2] A superspace formulation of Yang-Mills theory on sphere
    Banerjee, Rabin
    Deguchi, Shinichi
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [3] Equivariant reduction of Yang-Mills theory over the fuzzy sphere and the emergent vortices
    Harland, Derek
    Kuerkcueoglu, Seckin
    [J]. NUCLEAR PHYSICS B, 2009, 821 (1-2) : 380 - 398
  • [4] Mass deformation of twisted super Yang-Mills theory with fuzzy sphere solution
    Kato, Junji
    Kondo, Yoshi
    Miyake, Akiko
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09):
  • [5] Mass deformation of twisted super Yang-Mills theory with fuzzy sphere solution
    Junji Kato
    Yoshi Kondo
    Akiko Miyake
    [J]. Journal of High Energy Physics, 2011
  • [6] EMBEDDING YANG-MILLS THEORY INTO UNIVERSAL YANG-MILLS THEORY
    RAJEEV, SG
    [J]. PHYSICAL REVIEW D, 1991, 44 (06): : 1836 - 1841
  • [7] Topological Yang-Mills cohomology in pure Yang-Mills theory
    Accardi, A
    Belli, A
    Martellini, M
    Zeni, M
    [J]. PHYSICS LETTERS B, 1998, 431 (1-2) : 127 - 134
  • [8] Maximally supersymmetric Yang-Mills theory: The story of N=4 Yang-Mills theory
    Brink, Lars
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (01):
  • [9] Yang-Mills Theory of Gravity
    Al Matwi, Malik
    [J]. PHYSICS, 2019, 1 (03): : 339 - 359
  • [10] YANG-MILLS THEORY ON A CYLINDER
    RAJEEV, SG
    [J]. PHYSICS LETTERS B, 1988, 212 (02) : 203 - 205