Analytic approximation for eigenvalues of a class of PT-symmetric Hamiltonians

被引:3
|
作者
Skoromnik, O. D. [1 ]
Feranchuk, I. D. [2 ,3 ,4 ]
机构
[1] Max Planck Inst Nucl Phys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
[2] Ton Duc Thang Univ, Atom Mol & Opt Phys Res Grp, Tan Phong Ward, 19 Nguyen Huu Tho St,Dist 7, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Sci Appl, Tan Phong Ward, 19 Nguyen Huu Tho St,Dist 7, Ho Chi Minh City, Vietnam
[4] Belarusian State Univ, 4 Nezavisimosty Ave, Minsk 220030, BELARUS
关键词
NON-HERMITIAN HAMILTONIANS; SPECTRA; ANSATZ;
D O I
10.1103/PhysRevA.96.052102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An analytical approximation for the eigenvalues of PT-symmetric Hamiltonian H = -d(2)/dx(2) - (ix) (is an element of+2), is an element of > -1 is developed via simple basis sets of harmonic-oscillator wave functions with variable frequencies and equilibrium positions. We demonstrate that our approximation provides high accuracy for any given energy level for all values of is an element of > -1.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Eigenvalues of PT-symmetric oscillators with polynomial potentials
    Shin, KC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (27): : 6147 - 6166
  • [22] On eigenvalues of a PT-symmetric operator in a thin layer
    Borisov, D. I.
    Znojil, M.
    SBORNIK MATHEMATICS, 2017, 208 (02) : 173 - 199
  • [23] Scarcity of real discrete eigenvalues in non-analytic complex PT-symmetric potentials
    Ahmed, Zafar
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (02): : 323 - 328
  • [24] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians:Bethe ansatz method
    M Baradaran
    H Panahi
    Chinese Physics B, 2017, 26 (06) : 14 - 21
  • [25] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
    Baradaran, M.
    Panahi, H.
    CHINESE PHYSICS B, 2017, 26 (06)
  • [26] Photonic quantum simulations of coupled PT-symmetric Hamiltonians
    Maraviglia, Nicola
    Yard, Patrick
    Wakefield, Ross
    Carolan, Jacques
    Sparrow, Chris
    Chakhmakhchyan, Levon
    Harrold, Chris
    Hashimoto, Toshikazu
    Matsuda, Nobuyuki
    Harter, Andrew K.
    Joglekar, Yogesh N.
    Laing, Anthony
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [27] Three PT-symmetric Hamiltonians with completely different spectra
    Fernandez, Francisco M.
    Garcia, Javier
    ANNALS OF PHYSICS, 2015, 363 : 496 - 502
  • [28] Fundamental length in quantum theories with PT-symmetric Hamiltonians
    Znojil, Miloslav
    PHYSICAL REVIEW D, 2009, 80 (04):
  • [29] The emergence of eigenvalues of a PT-symmetric operator in a thin strip
    D. I. Borisov
    Mathematical Notes, 2015, 98 : 872 - 883
  • [30] Analytic results for a PT-symmetric optical structure
    Jones, H. F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (13)