Galois correspondence on linear codes over finite chain rings

被引:2
|
作者
Tabue, Alexandre Fotue [1 ]
Martinez-Moro, Edgar [2 ]
Mouaha, Christophe [3 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Math, Yaounde, Cameroon
[2] Univ Valladolid, Inst Math, Castilla, Spain
[3] Univ Yaounde I, Higher Teachers Training Coll Yaounde, Dept Math, Yaounde, Cameroon
关键词
Finite chain rings; Galois correspondence; Galois-subring subcode; CYCLIC CODES;
D O I
10.1016/j.disc.2019.111653
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S vertical bar T be a Galois extension of finite chain rings and consider H as its group of ring-automorphisms fixing the elements in T. In this paper we determine the stabilizer under such a group of any S-linear code. Using the so called Galois interior a correspondence between subgroups of H and a set of S-linear subcodes of B is determined. Some improvements of upper and lower bounds for the rank of the Galois-subring subcode and trace code are derived from this construction. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Linear Codes over Finite Chain Rings
    Liu, Hongwei
    [J]. ARS COMBINATORIA, 2010, 95 : 511 - 529
  • [2] On trace codes and Galois invariance over finite commutative chain rings
    Martinez-Moro, E.
    Nicolas, A. P.
    Rua, I. F.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2013, 22 : 114 - 121
  • [3] Decoding of linear codes over Galois rings
    Babu, NS
    Zimmermann, KH
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1599 - 1603
  • [4] Quantum codes from linear codes over finite chain rings
    Liu, Xiusheng
    Liu, Hualu
    [J]. QUANTUM INFORMATION PROCESSING, 2017, 16 (10)
  • [5] Quantum codes from linear codes over finite chain rings
    Xiusheng Liu
    Hualu Liu
    [J]. Quantum Information Processing, 2017, 16
  • [6] Notes on linear codes over finite commutative chain rings
    Liu, Zi-hui
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (01): : 141 - 148
  • [7] Notes on Linear Codes over Finite Commutative Chain Rings
    Zi-hui Liu Department of Mathematics
    [J]. Acta Mathematicae Applicatae Sinica, 2011, 27 (01) : 141 - 148
  • [8] Notes on linear codes over finite commutative chain rings
    Zi-hui Liu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 141 - 148
  • [9] On homogeneous arcs and linear codes over finite chain rings
    Honold, Thomas
    Landjev, Ivan
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (03) : 359 - 375
  • [10] On homogeneous arcs and linear codes over finite chain rings
    Thomas Honold
    Ivan Landjev
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2023, 34 : 359 - 375