3-D ultrasound strain images for breast cancer diagnosis

被引:4
|
作者
Chang, RF [1 ]
Chen, DR [1 ]
Moon, WK [1 ]
Lai, WR [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi 62117, Taiwan
关键词
3-D ultrasound; 3-D ultrasound strain image; strain feature analysis; level set method;
D O I
10.1016/j.ics.2005.03.052
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Strain imaging with ultrasound is a recent technique to provide additional information for tissue characterization by imaging differences in tissue stiffness. The conventional 2-D strain method is applied for only two US images with and without compression. In this paper, the strain imaging technique is extended for the 3-D ultrasound dataset for classify breast masses. The proposed strain image analysis is based on quantifying the turnout's shape change after compression. A level set segmentation method is used to extract the lesion contours from the 3-D US images. Some strain features are proposed to compare the lesion contours of the pre- and post-compressed 3-D US images. A support vector machine (SVM) is also used to classify lesions. According to the experimental results, the 3-D stain method is better than the 2-D strain method. (c) 2005 CARS & Elsevier B.V. All rights reserved.
引用
收藏
页码:1069 / 1074
页数:6
相关论文
共 50 条
  • [41] Breast and Tumour Volume Measurements in Breast Cancer Patients Using 3-D Automated Breast Volume Scanner Images
    Lagendijk, M.
    Vos, E. L.
    Ramlakhan, K. P.
    Verhoef, C.
    Koning, A. H. J.
    van Lankeren, W.
    Koppert, L. B.
    WORLD JOURNAL OF SURGERY, 2018, 42 (07) : 2087 - 2093
  • [42] USE OF 3-D ULTRASOUND TECHNIQUE IN PRENATAL-DIAGNOSIS
    MERZ, E
    ULTRASCHALL IN DER MEDIZIN, 1995, 16 (04): : 154 - 161
  • [43] Fusion of Wavelet and Morphological Features for Breast Cancer Diagnosis in Ultrasound Images
    Eltoukhy, Mohamed M.
    Farag, Abdelalim K.
    Abdelwahed, Noura M. A.
    CURRENT MEDICAL IMAGING, 2016, 12 (04) : 290 - 297
  • [44] CANCER SPECIALISTS USE 3-D IMAGES OF THE BODY
    BALME, RP
    RECHERCHE, 1987, 18 (187): : 528 - 529
  • [45] 3-D Res-CapsNet convolutional neural network on automated breast ultrasound tumor diagnosis
    Xiang, Huiling
    Huang, Yao-Sian
    Lee, Chu-Hsuan
    Chien, Ting-Yin Chang
    Lee, Cheng-Kuang
    Liu, Lixian
    Li, Anhua
    Lin, Xi
    Chang, Ruey-Feng
    EUROPEAN JOURNAL OF RADIOLOGY, 2021, 138
  • [46] Computer-Aided Lesion Diagnosis in Automated 3-D Breast Ultrasound Using Coronal Spiculation
    Tan, Tao
    Platel, Bram
    Huisman, Henkjan
    Sanchez, Clara I.
    Mus, Roel
    Karssemeijer, Nico
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (05) : 1034 - 1042
  • [47] COMPUTER-AIDED DIAGNOSIS FOR BREAST TUMORS BY USING VASCULARIZATION OF 3-D POWER DOPPLER ULTRASOUND
    Huang, Yu-Len
    Kuo, Shou-Jen
    Hsu, Chia-Chia
    Tseng, Hsin-Shun
    Hsiao, Yi-Hsuan
    Chen, Dar-Ren
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2009, 35 (10): : 1607 - 1614
  • [48] SONOGRAPHIC PHENOTYPES OF MOLECULAR SUBTYPES OF INVASIVE DUCTAL CANCER IN AUTOMATED 3-D BREAST ULTRASOUND
    van Zelst, Jan C. M.
    Balkenhol, Maschenka
    Tan, Tao
    Rutten, Matthieu
    Imhof-Tas, Mechli
    Bult, Peter
    Karssemeijer, Nico
    Mann, Ritse M.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2017, 43 (09): : 1820 - 1828
  • [49] 3-D reconstruction of objects from ultrasound images: Possibilities and limits
    CrivianuGaita, D
    MIclea, F
    Rotaru, C
    Muntean, G
    Holban, S
    Mihalas, GI
    CURRENT PERSPECTIVES IN HEALTHCARE COMPUTING, CONFERENCE, 1997, : 149 - 156
  • [50] FULLY AUTOMATIC PLAQUE SEGMENTATION IN 3-D CAROTID ULTRASOUND IMAGES
    Cheng, Jieyu
    Li, He
    Xiao, Feng
    Fenster, Aaron
    Zhang, Xuming
    He, Xiaoling
    Li, Ling
    Ding, Mingyue
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2013, 39 (12): : 2431 - 2446