Coherent states for the Kepler motion. II

被引:7
|
作者
Toyoda, T [1 ]
Wakayama, S
机构
[1] Univ Alberta, Inst Theoret Phys, Edmonton, AB T6G 2J1, Canada
[2] Tokai Univ, Dept Phys, Kanagawa 2591292, Japan
来源
PHYSICAL REVIEW A | 2001年 / 64卷 / 03期
关键词
D O I
10.1103/PhysRevA.64.032110
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The coherent states for the quantum Kepler motion proposed in our previous work [Phys, Rev. A 59, 1021 (1999)], which is based on the dynamical SU(2)x SU(2) symmetry and the Duru-Kleinert auxiliary time, are improved by making use of the theory of the conserved-charge coherent states formulated by Bhaumik et al. and by Skagertsam. The expectation values for the angular momentum and the Runge-Lenz-Pauli vector with respect to the improved Kepler coherent states are also discussed.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Influence of the heat flux on Brown's motion. II
    Sato, Mizuho
    ZEITSCHRIFT FUR PHYSIK, 1933, 83 (5-6): : 412 - 416
  • [22] Time and Motion.
    Kirschmann, A.
    ARCHIV FUR DIE GESAMTE PSYCHOLOGIE, 1915, 33 (3-4): : 229 - 240
  • [23] WEIGHING IN MOTION.
    Phillips, P.
    Colliery guardian Redhill, 1987, 235 (11):
  • [24] Bodies in motion.
    Bogenschutz, D
    LIBRARY JOURNAL, 2005, 130 (11) : 63 - 63
  • [25] Slow motion.
    Sparrow, J
    LIBRARY JOURNAL, 1998, 123 (16) : 106 - 106
  • [26] Cultures in Motion.
    Prange, Sebastian R.
    JOURNAL OF WORLD HISTORY, 2014, 25 (04) : 660 - 662
  • [27] On constrained motion.
    Field, P
    AMERICAN JOURNAL OF MATHEMATICS, 1914, 36 : 21 - 30
  • [28] Bodies in motion.
    Reale, Michelle
    WORLD LITERATURE TODAY, 2006, 80 (04) : 68 - 68
  • [29] TIME VARIATION OF KEPLER TRANSITS INDUCED BY STELLAR SPOTS-A WAY TO DISTINGUISH BETWEEN PROGRADE AND RETROGRADE MOTION. II. APPLICATION TO KOIs
    Holczer, Tomer
    Shporer, Avi
    Mazeh, Tsevi
    Fabrycky, Daniel
    Nachmani, Gil
    McQuillan, Amy
    Sanchis-Ojeda, Roberto
    Orosz, Jerome A.
    Welsh, William F.
    Ford, Eric B.
    Jontof-Hutter, Daniel
    ASTROPHYSICAL JOURNAL, 2015, 807 (02):
  • [30] HAMILTON'S PRINCIPLE FOR THE EULERIAN DESCRIPTION OF MOTION. II.
    Ghinda, Th.
    1600, (31):