Deep learning-based load forecasting considering data reshaping using MATLAB\Simulink

被引:3
|
作者
Hamad, Zhalla [1 ]
Abdulrahman, Ismael [1 ]
机构
[1] Erbil Polytech Univ, Erbil Tech Engn Coll, Dept Informat Syst Engn Tech, Erbil 44001, Kurdistan Regio, Iraq
关键词
Load forecasting; Deep learning; LSTM; GRU; MATLAB; Simulink; Kurdistan region; SHORT-TERM; NEURAL-NETWORK; FEATURE-EXTRACTION; LSTM; CNN; MODELS;
D O I
10.1007/s40095-022-00480-x
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Load forecasting is a nonlinear problem and complex task that plays a key role in power system planning, operation, and control. A recent study proposed a deep learning approach called historical data augmentation (HDA) to improve the accuracy of the load forecasting model by dividing the input data into several yearly sub-datasets. When the original data is associated with high time step changes from 1 year to another, the approach was not found as effective as it should be for long-term forecasting because the time-series information is disconnected by the approach between the end of 1-year sub-data and the beginning of the next-year sub-data. Alternatively, this paper proposes the use of 2-year sub-dataset in order to connect the two ends of the yearly subsets. A correlation analysis is conducted to show how the yearly datasets are correlated to each other. In addition, a Simulink-based program is introduced to simulate the problem which has an advantage of visualizing the algorithm. To increase the model generalization, several inputs are considered in the model including load demand profile, weather information, and some important categorical data such as week-day and weekend data that are embedded using one-hot encoding technique. The deep learning methods used in this study are the long short-term memory (LSTM) and gated rest unit (GRU) neural networks which have been increasingly employed in the recent years for time series and sequence problems. To provide a theoretical background on these models, a new picturized detail is presented. The proposed method is applied to the Kurdistan regional load demands and compared with classical methods of data inputting demonstrating improvements in both the model accuracy and training time.
引用
收藏
页码:853 / 869
页数:17
相关论文
共 50 条
  • [41] Developing a deep learning-based storm surge forecasting model
    Xie, Wenhong
    Xu, Guangjun
    Zhang, Hongchun
    Dong, Changming
    [J]. OCEAN MODELLING, 2023, 182
  • [42] Deep learning-based household electric energy consumption forecasting
    Hyeon, Jonghwan
    Lee, HyeYoung
    Ko, Bowon
    Choi, Ho-Jin
    [J]. JOURNAL OF ENGINEERING-JOE, 2020, 2020 (13): : 639 - 642
  • [43] A Hybrid Deep Learning-Based Network for Photovoltaic Power Forecasting
    Hussain, Altaf
    Khan, Zulfiqar Ahmad
    Hussain, Tanveer
    Ullah, Fath U. Min
    Rho, Seungmin
    Baik, Sung Wook
    [J]. COMPLEXITY, 2022, 2022
  • [44] Deep learning-based approach for forecasting intermittent online sales
    Ahmadov Y.
    Helo P.
    [J]. Discover Artificial Intelligence, 2023, 3 (01):
  • [45] Deep learning-based tree classification using mobile LiDAR data
    Guan, Haiyan
    Yu, Yongtao
    Ji, Zheng
    Li, Jonathan
    Zhang, Qi
    [J]. REMOTE SENSING LETTERS, 2015, 6 (11) : 864 - 873
  • [46] A Deep Learning-Based Coyote Detection System Using Audio Data
    Jung, Heesun
    Kwon, Bokyung
    Kim, Youngbin
    Lee, Yejin
    Park, Jihyeon
    Pegg, Griffin
    Wang, Yaqin
    Smith, Anthony H.
    [J]. 2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 170 - 175
  • [47] Using Synthetic Training Data for Deep Learning-Based GBM Segmentation
    Lindner, Lydia
    Narnhofer, Dominik
    Weber, Maximilian
    Gsaxner, Christina
    Kolodziej, Malgorzata
    Egger, Jan
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 6724 - 6729
  • [48] Deep Learning-based Anomaly Detection for Compressors Using Audio Data
    Mobtahej, Pooyan
    Zhang, Xulong
    Hamidi, Maryam
    Zhang, Jing
    [J]. 67TH ANNUAL RELIABILITY & MAINTAINABILITY SYMPOSIUM (RAMS 2021), 2021,
  • [49] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107
  • [50] Machine Learning-Based Short-Term Composite Load Forecasting
    Tomasevic, Dzenana
    Konjic, Tatjana
    [J]. 2023 IEEE BELGRADE POWERTECH, 2023,