Parallel distributed computing using Python']Python

被引:327
|
作者
Dalcin, Lisandro D. [1 ]
Paz, Rodrigo R. [1 ]
Kler, Pablo A. [1 ]
Cosimo, Alejandro [1 ]
机构
[1] Univ Nacl Litoral UNL, Consejo Nacl Invest Cient & Tecn CONICET, Ctr Int Metodos Computac Ingn CIMEC, Inst Desarrollo Tecnol Ind Quim INTEC, Santa Fe, Argentina
关键词
!text type='Python']Python[!/text; MPI; PETSc; FREE-FLOW ELECTROPHORESIS; SIMULATION;
D O I
10.1016/j.advwatres.2011.04.013
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
This work presents two software components aimed to relieve the costs of accessing high-performance parallel computing resources within a Python programming environment: MPI for Python and PETSc for Python. MPI for Python is a general-purpose Python package that provides bindings for the Message Passing Interface (MPI) standard using any back-end MPI implementation. Its facilities allow parallel Python programs to easily exploit multiple processors using the message passing paradigm. PETSc for Python provides access to the Portable, Extensible Toolkit for Scientific Computation (PETSc) libraries. Its facilities allow sequential and parallel Python applications to exploit state of the art algorithms and data structures readily available in PETSc for the solution of large-scale problems in science and engineering. MPI for Python and PETSc for Python are fully integrated to PETSc-FEM, an MPI and PETSc based parallel, multiphysics, finite elements code developed at CIMEC laboratory. This software infrastructure supports research activities related to simulation of fluid flows with applications ranging from the design of microfluidic devices for biochemical analysis to modeling of large-scale stream/aquifer interactions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1124 / 1139
页数:16
相关论文
共 50 条
  • [41] Parallel Genetic Algorithms' Implementation Using a Scalable Concurrent Operation in Python']Python
    Skorpil, Vladislav
    Oujezsky, Vaclav
    [J]. SENSORS, 2022, 22 (06)
  • [42] A Python']Python Software Library for Computing with Words and Perceptions
    Sharma, Deepak
    Gupta, Prashant K.
    Andreu-Perez, Javier
    Mendel, Jerry M.
    Martinez Lopez, Luis
    [J]. IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [43] Agent-oriented computing platform in Python']Python
    Kazirod, Maciej
    Korczynski, Wojciech
    Byrski, Aleksander
    [J]. 2014 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 3, 2014, : 365 - 372
  • [44] High-performance Python']Python for crystallographic computing
    Boulle, A.
    Kieffer, J.
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2019, 52 : 882 - 897
  • [45] Python']Python accelerators for high-performance computing
    Marowka, Ami
    [J]. JOURNAL OF SUPERCOMPUTING, 2018, 74 (04): : 1449 - 1460
  • [46] A Python']Python upgrade to the GooFit package for parallel fitting
    Schreiner, Henry
    Pandey, Himadri
    Sokoloff, Michael D.
    Hittle, Bradley
    Tomko, Karen
    Hasse, Christoph
    [J]. 23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
  • [47] Reflections on the Compatibility, Performance, and Scalability of Parallel Python']Python
    Meier, Remigius
    Gross, Thomas R.
    [J]. PROCEEDINGS OF THE 15TH ACM SIGPLAN INTERNATIONAL SYMPOSIUM ON DYNAMIC LANGUAGES (DLS '19), 2019, : 91 - 103
  • [48] Parallel Processing of Genetic Algorithms in Python']Python Language
    Skorpil, V
    Oujersky, V
    Cika, P.
    Tuleja, M.
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 3727 - 3731
  • [49] MANGO: A PYTHON']PYTHON LIBRARY FOR PARALLEL HYPERPARAMETER TUNING
    Sandha, Sandeep Singh
    Aggarwal, Mohit
    Fedorov, Igor
    Srivastava, Mani
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3987 - 3991
  • [50] COSMOS: Python']Python library for massively parallel workflows
    Gafni, Erik
    Luquette, Lovelace J.
    Lancaster, Alex K.
    Hawkins, Jared B.
    Jung, Jae-Yoon
    Souilmi, Yassine
    Wall, Dennis P.
    Tonellato, Peter J.
    [J]. BIOINFORMATICS, 2014, 30 (20) : 2956 - 2958