A classification of conformally flat generalized Ricci recurrent pseudo-Riemannian manifolds

被引:2
|
作者
Loo, Tee-How [1 ]
De, Avik [2 ]
机构
[1] Univ Malaya, Inst Math Sci, Kuala Lumpur 50603, Malaysia
[2] Univ Tunku Abdul Rahman, Dept Math & Actuarial Sci, Jalan Sungai Long, Cheras 43000, Kajang, Malaysia
关键词
Generalized Ricci recurrent manifolds; conformally flat manifolds; de Sitter spacetimes; anti-de Sitter spacetimes;
D O I
10.1142/S0219887822500232
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Conformally flat pseudo-Riemannian manifolds with generalized Ricci recurrent, (GR)(n) structure are completely classified in this short report. A conformally flat generalized Ricci recurrent pseudo-Riemannian manifold is shown to be an Einstein manifold. In particular, a conformally flat generalized Ricci recurrent spacetime must be either a de Sitter spacetime or an anti-de Sitter spacetime.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] CONFORMALLY FLAT HOMOGENEOUS PSEUDO-RIEMANNIAN FOUR-MANIFOLDS
    Calvaruso, Giovanni
    Zaeim, Amirhesam
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2014, 66 (01) : 31 - 54
  • [2] On weakly conformally symmetric pseudo-Riemannian manifolds
    Mantica, Carlo Alberto
    Suh, Young Jin
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2017, 29 (03)
  • [3] FLAT HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS
    WOLF, JA
    [J]. GEOMETRIAE DEDICATA, 1995, 57 (01) : 111 - 120
  • [4] On the characterization of non-degenerate foliations of pseudo-Riemannian manifolds with conformally flat leaves
    Gomez-Lobo, Alfonso Garcia-Parrado
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
  • [5] Almost *-η-Ricci solitons on Kenmotsu pseudo-Riemannian manifolds
    Rashmi, S. V. Divya
    Venkatesha, V.
    [J]. ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2022, 42 (04): : 241 - 250
  • [6] On pseudo-Riemannian manifolds whose Ricci tensor is parallel
    Boubel, C
    Bergery, LB
    [J]. GEOMETRIAE DEDICATA, 2001, 86 (1-3) : 1 - 18
  • [7] FLAT PSEUDO-RIEMANNIAN STRUCTURES OF COMPACT MANIFOLDS
    FURNESS, P
    FEDIDA, E
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (03): : 169 - 171
  • [8] On Pseudo-Riemannian Manifolds Whose Ricci Tensor is Parallel
    Charles Boubel
    Lionel Bérard Bergery
    [J]. Geometriae Dedicata, 2001, 86 : 1 - 18
  • [9] On Conformally flat Almost Pseudo Ricci Symmetric Manifolds
    De, Uday Chand
    Gazi, Abul Kalam
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2009, 49 (03): : 507 - 520
  • [10] Pseudo-Riemannian manifolds with recurrent spinor fields
    Galaev, A. S.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (04) : 604 - 613