Autonomous underwater vehicle path planning based on actor-multi-critic reinforcement learning

被引:13
|
作者
Wang, Zhuo [1 ,2 ]
Zhang, Shiwei [1 ]
Feng, Xiaoning [3 ]
Sui, Yancheng [1 ]
机构
[1] Harbin Engn Univ, Sci & Technol Underwater Vehicle Lab, Harbin, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Harbin Engn Univ, Coll Comp Sci & Technol, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous underwater vehicle; path planning; dynamic obstacle avoidance; actor-critic; neural networks; FEEDFORWARD NETWORKS; ENVIRONMENT;
D O I
10.1177/0959651820937085
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The environmental adaptability of autonomous underwater vehicles is always a problem for its path planning. Although reinforcement learning can improve the environmental adaptability, the slow convergence of reinforcement learning is caused by multi-behavior coupling, so it is difficult for autonomous underwater vehicle to avoid moving obstacles. This article proposes a multi-behavior critic reinforcement learning algorithm applied to autonomous underwater vehicle path planning to overcome problems associated with oscillating amplitudes and low learning efficiency in the early stages of training which are common in traditional actor-critic algorithms. Behavior critic reinforcement learning assesses the actions of the actor from perspectives such as energy saving and security, combining these aspects into a whole evaluation of the actor. In this article, the policy gradient method is selected as the actor part, and the value function method is selected as the critic part. The strategy gradient and the value function methods for actor and critic, respectively, are approximated by a backpropagation neural network, the parameters of which are updated using the gradient descent method. The simulation results show that the method has the ability of optimizing learning in the environment and can improve learning efficiency, which meets the needs of real time and adaptability for autonomous underwater vehicle dynamic obstacle avoidance.
引用
收藏
页码:1787 / 1796
页数:10
相关论文
共 50 条
  • [41] Advancements in UAV Path Planning: A Deep Reinforcement Learning Approach with Soft Actor-Critic for Enhanced Navigation
    Guo, Jingrui
    Zhou, Guanzhong
    Huang, Hailong
    Huang, Chao
    UNMANNED SYSTEMS, 2024,
  • [42] Autonomous Control of Lift System based on Actor-Critic Learning for Air Cushion Vehicle
    Zhou, Hua
    Wang, Yuanhui
    Jiyang, E.
    Wang, Xiaole
    OCEANS 2023 - LIMERICK, 2023,
  • [43] Deep reinforcement learning based path tracking controller for autonomous vehicle
    Chen, I-Ming
    Chan, Ching-Yao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2021, 235 (2-3) : 541 - 551
  • [44] Practical Critic Gradient based Actor Critic for On-Policy Reinforcement Learning
    Gurumurthy, Swaminathan
    Manchester, Zachary
    Kolter, J. Zico
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [45] An actor-critic based learning method for decision-making and planning of autonomous vehicles
    XU Can
    ZHAO WanZhong
    CHEN QingYun
    WANG ChunYan
    Science China Technological Sciences, 2021, 64 (05) : 984 - 994
  • [46] An actor-critic based learning method for decision-making and planning of autonomous vehicles
    Xu Can
    Zhao WanZhong
    Chen QingYun
    Wang ChunYan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (05) : 984 - 994
  • [47] An actor-critic based learning method for decision-making and planning of autonomous vehicles
    XU Can
    ZHAO WanZhong
    CHEN QingYun
    WANG ChunYan
    Science China(Technological Sciences), 2021, (05) : 984 - 994
  • [48] An actor-critic based learning method for decision-making and planning of autonomous vehicles
    Can Xu
    WanZhong Zhao
    QingYun Chen
    ChunYan Wang
    Science China Technological Sciences, 2021, 64 : 984 - 994
  • [49] Research Progress of Path Planning Methods for Autonomous Underwater Vehicle
    Guo, Yinjing
    Liu, Hui
    Fan, Xiaojing
    Lyu, Wenhong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021 (2021)
  • [50] Integrated Autonomous Underwater Vehicle Path Planning and Collision Avoidance
    Danielis, Peter
    Brekenfelder, Willi
    Parzyjegla, Helge
    Ghoghar, Pranavkumar
    Stube, Paul
    Torres, Frank Sill
    TRANSACTIONS ON MARITIME SCIENCE-TOMS, 2024, 13 (01):