Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network

被引:188
|
作者
Tan, Jen Hong [1 ]
Fujita, Hamido [2 ]
Sivaprasad, Sobha [3 ]
Bhandary, Sulatha V. [4 ]
Rao, A. Krishna [4 ]
Chua, Kuang Chua [1 ]
Acharya, U. Rajendra [1 ,5 ,6 ]
机构
[1] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore, Singapore
[2] Iwate Prefectural Univ, Fac Software & Informat Sci, Takizawa, Iwate 0200693, Japan
[3] NIHR Moorfields Biomed Res Ctr, London, England
[4] Kasturba Med Coll & Hosp, Dept Ophthalmol, Manipal 576104, Karnataka, India
[5] SIM Univ, Sch Sci & Technol, Dept Biomed Engn, Singapore, Singapore
[6] Univ Malaya, Dept Biomed Engn, Fac Engn, Kuala Lumpur, Malaysia
关键词
Exudates; Microaneurysms; Haemorrhages; Convolutional neural network; Fundus image; Segmentation; Diabetic retinopathy; COLOR FUNDUS IMAGES; DIABETIC-RETINOPATHY; RED LESIONS;
D O I
10.1016/j.ins.2017.08.050
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Screening for vision threatening diabetic retinopathy by grading digital retinal images reduces the risk of blindness in people with diabetes. Computer-aided diagnosis can aid human graders to cope with this mounting problem. We propose to use a 10-layer convolutional neural network to automatically, simultaneously segment and discriminate exudates, haemorrhages and micro-aneurysms. Input image is normalized before segmentation. The net is trained in two stages to improve performance. On average, our net on 30,275,903 effective points achieved a sensitivity of 0.8758 and 0.7158 for exudates and dark lesions on the CLEOPATRA database. It also achieved a sensitivity of 0.6257 and 0.4606 for haemorrhages and micro-aneurysms. This study shows that it is possible to get a single convolutional neural network to segment these pathological features on a wide range of fundus images with reasonable accuracy. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:66 / 76
页数:11
相关论文
共 50 条
  • [41] Automated Microaneurysms Detection in Fundus Images Using Image Segmentation
    Sreng, Syna
    Maneerat, Noppadol
    Hamamoto, Kazuhiko
    2017 INTERNATIONAL CONFERENCE ON DIGITAL ARTS, MEDIA AND TECHNOLOGY (ICDAMT): DIGITAL ECONOMY FOR SUSTAINABLE GROWTH, 2017, : 19 - 23
  • [42] AUTOMATED 3D MUSCLE SEGMENTATION FROM MRI DATA USING CONVOLUTIONAL NEURAL NETWORK
    Ghosh, Shrimanti
    Boulanger, Pierre
    Acton, Scott T.
    Blemeker, Silvia S.
    Ray, Nilanjan
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4437 - 4441
  • [43] Automatic Tumor Segmentation in 3D Automated Breast Ultrasound using Convolutional Neural Network
    Lei, Yang
    He, Xiuxiu
    Wang, Tonghe
    Yao, Jincao
    Wang, Lijing
    Li, Wei
    Curran, Walter J.
    Liu, Tian
    Xu, Dong
    Yang, Xiaofeng
    MEDICAL IMAGING 2021: ULTRASONIC IMAGING AND TOMOGRAPHY, 2021, 11602
  • [44] Automated Left and Right Chamber Segmentation in Cardiac MRI Using Dense Fully Convolutional Neural Network
    Penso, Marco
    Moccia, Sara
    Scafuri, Stefano
    Muscogiuri, Giuseppe
    Pontone, Gianluca
    Pepi, Mauro
    Caiani, Enrico Gianluca
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [45] Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network
    Sadeghi, Sogand
    Farzin, Mostafa
    Gholami, Somayeh
    POLISH JOURNAL OF RADIOLOGY, 2023, 88 : E31 - E40
  • [46] Automated Segmentation of Olivine Phenocrysts in a Volcanic Rock Thin Section Using a Fully Convolutional Neural Network
    Leichter, Artem
    Almeev, Renat R.
    Wittich, Dennis
    Beckmann, Philipp
    Rottensteiner, Franz
    Holtz, Francois
    Sester, Monika
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [47] Automated detection and segmentation of sclerotic spinal lesions on body CTs using a deep convolutional neural network
    Connie Y. Chang
    Colleen Buckless
    Kaitlyn J. Yeh
    Martin Torriani
    Skeletal Radiology, 2022, 51 : 391 - 399
  • [48] Automated Segmentation of Geographic Atrophy Using Deep Convolutional Neural Networks
    Hu, Zhihong
    Wang, Ziyuan
    Sadda, SriniVas R.
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [49] Convolutional Neural Network for Segmentation of Single Cell Gel Electrophoresis Assay
    Ruz-Suarez, Daniel
    Martin-Gonzalez, Anabel
    Brito-Loeza, Carlos
    Leonor Pacheco-Pantoja, Elda
    INTELLIGENT COMPUTING SYSTEMS (ISICS 2022), 2022, 1569 : 57 - 68
  • [50] Segmentation of MR Images using DN Convolutional Neural Network
    Bhairnallykar S.T.
    Narawade V.
    International Journal of Information Technology, 2023, 15 (8) : 4565 - 4576