Finite-range corrections to the thermodynamics of the one-dimensional Bose gas

被引:8
|
作者
Cappellaro, A. [1 ,2 ]
Salasnich, L. [1 ,2 ,3 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Via Marzolo 8, I-35131 Padua, Italy
[2] Univ Padua, CNISM, Via Marzolo 8, I-35131 Padua, Italy
[3] CNR INO, Via Nello Carrara, I-150019 Sesto Fiorentino, Italy
关键词
QUANTUM PHASE-TRANSITION; BOSONS; RENORMALIZATION; REGULARIZATION; SCATTERING; SYSTEM; ATOMS;
D O I
10.1103/PhysRevA.96.063610
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Lieb-Liniger equation of state accurately describes the zero-temperature universal properties of a dilute one-dimensional Bose gas in terms of the s-wave scattering length. For weakly interacting bosons we derive nonuniversal corrections to this equation of state taking into account finite-range effects of the interatomic potential. Within the finite-temperature formalism of functional integration we find a beyond-mean-field equation of state which depends on scattering length and effective range of the interaction potential. Our analytical results, which are obtained performing dimensional regularization of divergent zero-point quantum fluctuations, show that for the one-dimensional Bose gas thermodynamic quantities such as pressure and sound velocity are modified by changing the ratio between the effective range and the scattering length.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Hydrodynamic modes of a one-dimensional trapped Bose gas
    Fuchs, JN
    Leyronas, X
    Combescot, R
    PHYSICAL REVIEW A, 2003, 68 (04):
  • [42] Correlation lengths of the repulsive one-dimensional Bose gas
    Patu, Ovidiu I.
    Kluemper, Andreas
    PHYSICAL REVIEW A, 2013, 88 (03)
  • [43] Extended conformal symmetry of the one-dimensional Bose gas
    Maule, M
    Sciuto, S
    MODERN PHYSICS LETTERS A, 1997, 12 (29) : 2153 - 2159
  • [44] Correlation functions of the one-dimensional attractive bose gas
    Calabrese, Pasquale
    Caux, Jean-Sebastien
    PHYSICAL REVIEW LETTERS, 2007, 98 (15)
  • [45] Quantum impurity in a one-dimensional trapped Bose gas
    Dehkharghani, A. S.
    Volosniev, A. G.
    Zinner, N. T.
    PHYSICAL REVIEW A, 2015, 92 (03):
  • [46] Interacting one-dimensional Bose gas: Beyond Bogolyubov
    Paul, P
    Sutherland, B
    PHYSICAL REVIEW A, 2000, 62 (05): : 055601 - 055601
  • [47] Statistical properties of one-dimensional attractive Bose gas
    Bienias, P.
    Pawlowski, K.
    Gajda, M.
    Rzazewski, K.
    EPL, 2011, 96 (01)
  • [48] Ideal Bose gas in steep one-dimensional traps
    Rovenchak, Andrij
    Krynytskyi, Yuri
    Fizika Nizkikh Temperatur, 2022, 48 (01): : 23 - 29
  • [49] CORRELATION LENGTH OF THE ONE-DIMENSIONAL BOSE-GAS
    BOGOLIUBOV, NM
    KOREPIN, VE
    NUCLEAR PHYSICS B, 1985, 257 (06) : 766 - 778
  • [50] Statistical mechanics of a one-dimensional δ-function Bose gas
    Wadati, M
    Kato, G
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (07) : 1924 - 1930