Higher integrability result for nonlinear elliptic systems with conormal boundary conditions

被引:1
|
作者
Kim, Youchan [1 ]
Ryu, Seungjin [1 ]
Shin, Pilsoo [2 ]
机构
[1] Univ Seoul, Dept Math, Seoul 02504, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Nonlinear elliptic system; Higher integrability; PARABOLIC EQUATIONS; BMO COEFFICIENTS; DERIVATIVE PROBLEM; SOBOLEV EXTENSION; DIVERGENCE FORM; REGULARITY; UNIFORM;
D O I
10.1016/j.na.2018.12.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a boundary higher integrability result for nonlinear elliptic systems with conormal boundary conditions in locally uniform domains. To do it, we derive a boundary version of Gehring-Giaquinta-Modica Lemma and Sobolev-Poincare type inequality in locally uniform domains. Our result plays a key role for handling the coefficients when obtaining Caldero n-Zygmund type estimates with conormal boundary conditions in nonsmooth domains. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条