Higher differentiability and integrability for some nonlinear elliptic systems with growth coefficients in BMO

被引:1
|
作者
Moscariello, Gioconda [1 ]
Pascale, Giulio [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
关键词
35B65; 35R05; 42B25; WEAK SOLUTIONS; PARTIAL REGULARITY; SINGULAR SET; EQUATIONS; MINIMIZERS; GRADIENT; INTEGRALS; CALCULUS; MINIMA; SPACES;
D O I
10.1007/s00526-024-02685-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider local solutionsuof nonlinear elliptic systems of the type divA(x,Du)=divFin Omega subset of R-n where u:Omega -> R(N)is in a weightedW1,plocspace, with p >= 2,Fis in a weightedW1,2locspace andx -> A(x,xi)has growth coefficients in the space of functions with bounded meanoscillation. We prove higher differentiability of uin the sense that the nonlinear expression ofits gradientV mu(Du):=(mu 2+|Du|2)p-24Du, with 0<mu <= 1, is weakly differentiable with D(V mu(Du))in a weightedL2locspace. Moreover we derive some local Calder & oacute;n-estimates when the source term is not necessarily differentiable. Global estimates for a suitable Dirichlet problem are also available
引用
收藏
页数:47
相关论文
共 50 条